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Abstract: Using Fracture Seismic methods to map fluid-conducting fracture zones makes it important
to understand fracture connectivity over distances greater 10–20 m in the Earth’s upper crust.
The principles required for this understanding are developed here from the observations that (1) the
spatial variations in crustal porosity are commonly associated with spatial variations in the magnitude
of the natural logarithm of crustal permeability, and (2) many parameters, including permeability
have a scale-invariant power law distribution in the crust. The first observation means that crustal
permeability has a lognormal distribution that can be described as κ ≈ κ0 exp(α(ϕ−ϕ0)), where α
is the ratio of the standard deviation of ln permeability from its mean to the standard deviation of
porosity from its mean. The scale invariance of permeability indicates that αφo = 3 to 4 and that the
natural log of permeability has a 1/k pink noise spatial distribution. Combined, these conclusions
mean that channelized flow in the upper crust is expected as the distance traversed by flow increases.
Locating the most permeable channels using Seismic Fracture methods, while filling in the less
permeable parts of the modeled volume with the correct pink noise spatial distribution of permeability,
will produce much more realistic models of subsurface flow.

Keywords: crustal well-core poroperm; crustal fluid flow; crustal flow channeling; critical state
physics; well-log spectral scaling; crustal power law scaling; lognormal; pink noise; crustal fracture
seismics; crustal fracture imaging

1. Introduction

As discussed by Sicking and Malin (2019) [1], new methods of passive seismic data acquisition
and processing allow ambient subsurface fluid connectivity to be mapped. Complementary to the
information on fluid pathways from microearthquakes (MEQ) generated by massive high-pressure
(active) fluid injections (e.g., [2]), the new passive technique of Fracture Seismics (FS) can directly
reveal both the locations and relative permeabilities of fluid-filled fractures. Further, and perhaps more
importantly, passive FS mapping shows the degree of flow connectivity at distance scales greater than
a few tens of meters from the point of active fluid injection.

A variety of independent evidence indicates that locations where MEQ and FS activity is most
intense are where fluid flow is most likely [1]. FS maps typically reveal long connectivity structures
that conduct fluid flow, as illustrated in Figure 1. The top panel shows the intensity of FS signals, and
the bottom panel indicates the fracture-connectivity skeletal pathways through the cloud where FS
signals are most intense and fluid flow is most likely.
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The FS pattern in Figure 1 is from a fracture stimulation in the Marcellus gas shales, and the
connectivity of its permeability-related signals may be considered a surprise. However, in this case the
FS flow prediction was confirmed both by gas pressure communication and by a tracer experiment.
These measurements showed a high degree of connectivity over ~600 m between vertical Well B and
horizontal Well A, as indicated by the FS backbone in the lower panel. This backbone was observed in
the FS data from Stage 3, and then later also at Stage 4, in advance of the arrival of tracer signals in
Well B, which appeared at the time Stage 5 was stimulated.
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FS intensity cloud for hydrofracturing Stages 3–5. Point A is the wellhead of a horizontal well with a 
trajectory indicted by the black line. Point B shows the location of a vertical well with pressure and 
chemical tracer monitors. Both pressure and tracer communicated between Well B and Well A, where 
the FS skeleton connects the wells over a distance of 600 m. Figure is from Lacazette et al (2013) [3]. 

There are good observation-based theoretical reasons to expect the kind of spatially extended 
crustal flow connectivity on the hundred-meter scale seen in Figure 1. The purpose of this paper is to 
discuss these reasons. We show that the distribution of features observed in such FS maps is expected. 
The expectation that crustal fluid flow over length-scales >10–20 m will be through high-connectivity 
flow structures is discussed below, from both (a) direct observations and physical logic and (b) the 
power law scale invariance in the observed self-similarity of fracture-connectivity patterns. The first 
approach was developed over the last three decades in a series of papers (e.g., [4–10]). The second 
approach has a vast and densely spaced literature (e.g., [11] and the many references therein). Our 
purpose here is to bring these insights together and convey an understanding of how upper-crustal 
fluid flow is likely to be structured, based on observations and the critical state physics of brittle rock.  

2. Crustal Observations and Implications 

2.1. The Observed Relationship between Crustal Porosity and Permeability  

Figure 1. (Top) A horizontal map slice of the above background Fracture Seismic (FS) intensity
(red high, blue low), activated during the third stage of a fracture stimulation treatment. (Bottom) The
above-background FS intensity (red high, blue low) backbone of the same horizontal map slice in the
FS intensity cloud for hydrofracturing Stages 3–5. Point A is the wellhead of a horizontal well with a
trajectory indicted by the black line. Point B shows the location of a vertical well with pressure and
chemical tracer monitors. Both pressure and tracer communicated between Well B and Well A, where
the FS skeleton connects the wells over a distance of 600 m. Figure is from Lacazette et al (2013) [3].

There are good observation-based theoretical reasons to expect the kind of spatially extended
crustal flow connectivity on the hundred-meter scale seen in Figure 1. The purpose of this paper
is to discuss these reasons. We show that the distribution of features observed in such FS maps
is expected. The expectation that crustal fluid flow over length-scales >10–20 m will be through
high-connectivity flow structures is discussed below, from both (a) direct observations and physical
logic and (b) the power law scale invariance in the observed self-similarity of fracture-connectivity
patterns. The first approach was developed over the last three decades in a series of papers (e.g., [4–10]).
The second approach has a vast and densely spaced literature (e.g., [11] and the many references
therein). Our purpose here is to bring these insights together and convey an understanding of how
upper-crustal fluid flow is likely to be structured, based on observations and the critical state physics
of brittle rock.

2. Crustal Observations and Implications

2.1. The Observed Relationship between Crustal Porosity and Permeability

This section first shows that spatial variations in crustal porosity invariably coincide with
commensurate spatial variations in the natural logarithm of permeability. It then shows that this means
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that the magnitude of crustal permeability commonly has a lognormal distribution, even though the
magnitude of porosity that is spatially associated with permeability is normally distributed. Following
Leary et al. (2017, 2018) [12,13], we derive a general expression that encapsulates this observation
and deduction. The derivation shows that the combinatorial probability of crustal pore and fracture
connections provides a logical explanation for why normally distributed pores are associated with
a lognormal distribution of permeability. There could be a physical extension between pores and
fractures [13] which we do not discuss here. With increasing strain, broken grain cements could
progressively localize deformation, eventually leading to faulting, for example. This is not addressed
in this paper. Here, we use observations of cores to discuss the connection conditions for permeability
and learn how a normal distribution of pores and pore connections leads to the observed lognormal
distribution of core permeability. We then transfer this insight to fractures.

Figures 2–4 show field data that illustrate how changes in crustal porosity are invariably associated
with changes in the natural logarithm of permeability,

δϕ ∝ δ lnκ (1)

The (possibly irregularly spaced) porosity and permeability values in these figures were measured
down well-core samples according to standard oil-field procedures (e.g., [14]). The histograms on
the left side of Figure 2 show that the porosity values of four North Sea cores have a normal spatial
distribution, whereas the permeability values have a lognormal distribution. Similar histograms of
porosity and permeability are shown in Figures 3 and 4.

On the right side of Figure 2, the porosity and permeability values are plotted as a function of
sample number. In Figures 3 and 4, they are plotted as a function of sample depth. The measurements
are plotted in normalized form, such that their variations have zero-mean and unit variance. This is
achieved by subtracting the mean porosity (or ln permeability) and dividing by the standard deviation
of porosity (or ln permeability). These profiles show that where there is a change in porosity there is a
correlated change in ln permeability. Natural logs are used throughout the discussion for consistency
with these observational plots and for compatibility to theory.

Whereas the number of samples with small porosity values rapidly decreases in these histograms,
the same is not true for permeability histograms. The roll-off in the number of samples with small
permeability values can be seen only in the plot of numbers versus the logarithm of permeability, and
may be due to failure to measure variations in low permeability. The potential for undersampling
suggests that the permeability distribution could be alternatively described as a power law (which
has no roll-off at low permeability) instead of lognormal. Both logarithmic and power distributions
are long-tailed at the high permeability end of their distributions. However, power distributions are
fat-tailed, meaning this distribution has more high permeability values than a lognormal distribution.

The important point here is not these differences between power and lognormal distributions,
but simply that, on simple inspection, the porosity and permeability distributions are normal and
lognormal, respectively, and these relationships are general. The Figures show data from wells
worldwide. They depict the most commonly observed characteristic of reservoir rock porosity
and permeability. Furthermore, the normal-versus-lognormal correlations between porosity and
permeability are not dependent on the orientation of the sampling well. Figure 4 shows that the same
relationship is observed in cores from a horizontal well as in cores from vertical wells. Be it a vertical
or horizontal well-core sampling sequence, the differences in their population distributions remain the
same: normally distributed porosity and long-tail power permeability. Both these distribution and
correlation relationships appear to apply just as well along rock formations as across them.
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cores from the North Sea (top), Germany (middle), and South Australia (bottom). Porosity and ln 
permeability are plotted against sample depth. Both are normalized to zero mean and unit variance. 
The number of measurements is shown on the plots. In the histograms, the porosity values are plotted 
as the number of values in 1% wide bins versus percent porosity. Both ln permeability and 
permeability data are plotted as the number of values in bins versus millidarcies (mD). 

Figure 2. Porosity and permeability measurements on four sub-vertical North Sea gas field well cores.
(Left panel) Histograms of porosity values are plotted as number of values in 1% wide bins versus
percent porosity. Both log permeability and permeability data are plotted as the number of values in a
bin versus millidarcies. The histograms suggest that the porosity has a normal, and the permeability a
lognormal, distribution. (Two right panels) Porosity (blue) and natural ln permeability (red) data are
plotted as functions of sample number. The porosity and permeability data are normalized to zero
mean and unit variance.
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Figure 3. Porosity (φ, blue ) and natural log permeability (ln κ, red) magnitudes in sub-vertical well
cores from the North Sea (top), Germany (middle), and South Australia (bottom). Porosity and ln
permeability are plotted against sample depth. Both are normalized to zero mean and unit variance.
The number of measurements is shown on the plots. In the histograms, the porosity values are plotted
as the number of values in 1% wide bins versus percent porosity. Both ln permeability and permeability
data are plotted as the number of values in bins versus millidarcies (mD).

Figures 2–4 show data that establish Equation (1). Equation (1) can be integrated to yield
an expression between the spatial variation of permeability, κ(x,y,z), and the spatial variation of
porosity, ϕ (x,y,z)

κ ≈ κ0 exp(α(ϕ−ϕ0)), (2)



Geosciences 2020, 10, 50 5 of 15
Geosciences 2019, 9, x FOR PEER REVIEW 5 of 15 

 

 

Figure 4. (Top) Porosity (φ, blue) and ln permeability (ln κ, red) measurements from a horizontal well 
from North Sea clastic oil fields, plotted with zero-mean and unit variance. (Bottom) Histograms of 
the number of measurements in bins of equal porosity, ln κ, or κ. 

Figures 2–4 show data that establish Equation (1). Equation (1) can be integrated to yield an 
expression between the spatial variation of permeability, κ(x,y,z), and the spatial variation of 
porosity, φ (x,y,z) 

( )( )00 exp ϕϕακκ −≈ , (2) 

Here, 0κ and 0ϕ  are the mean values of permeability and porosity, and α is a constant of 
proportionality. That (2) follows from (1) can be easily verified by differentiating (2) with respect to 
ϕ . If ϕσϕϕ ±= 0 , it follows from (2) that ϕασκκ ±= 0lnln , where α  is the ratio of the 

standard deviation of κln to the standard deviation of ϕ : 

ϕκ σσα ln= . (3) 

When α is very small, the series expansion of the exponential in Equation (2) reduces to a linear 
relationship between the departure of κ  and the departure of ϕ  from their mean, and both 
permeability and porosity are normally distributed. In the small-α  limit, permeability equations 
such as the Kozeny–Carmen relationship hold. In this domain, the flow is homogeneous for a normal 
distribution of porosity.  

When α  is large, κ  fits the definition of a lognormal variable, where the permeability 
distribution has a long permeable tail. In the large-α  limit, κln  has a standard deviation spread of 

κσ ln . If this spread is large enough and, as discussed in the next section, the spatial distribution of 
permeability is a power distribution, the flow will be channelized. These two conditions (large α  
and a power spatial distribution of permeability) for channelized fracture flow are what we 
investigate in this paper. 

2.1.1. The Connection–Condition Explanation for a Lognormal Distribution in Permeability 

The reason that a normal distribution in porosity magnitude can lead to a lognormal distribution 
in permeability magnitude can be understood if it is recognized that permeability requires a 
connection condition to be met. For the current discussion, this connection condition is that fractures 
(or pores) must be able to pass fluids onward to other fractures (or pores).  

Shockley (1957) [15], among others, illustrated how physical/statistical observables (events) that 
are normally distributed can interact conditionally to create other observables (events) that are 
lognormally distributed. His simple example asked why relatively few authors publish the bulk of 

Figure 4. (Top) Porosity (φ, blue) and ln permeability (ln κ, red) measurements from a horizontal well
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Here, κ0 and ϕ0 are the mean values of permeability and porosity, and α is a constant of
proportionality. That (2) follows from (1) can be easily verified by differentiating (2) with respect to ϕ.
If ϕ = ϕ0 ± σϕ, it follows from (2) that lnκ = lnκ0 ± ασϕ, where α is the ratio of the standard deviation
of lnκ to the standard deviation of ϕ:

α = σlnκ/σϕ. (3)

When α is very small, the series expansion of the exponential in Equation (2) reduces to a linear
relationship between the departure of κ and the departure of ϕ from their mean, and both permeability
and porosity are normally distributed. In the small-α limit, permeability equations such as the
Kozeny–Carmen relationship hold. In this domain, the flow is homogeneous for a normal distribution
of porosity.

When α is large, κ fits the definition of a lognormal variable, where the permeability distribution
has a long permeable tail. In the large-α limit, lnκ has a standard deviation spread of σlnκ. If this
spread is large enough and, as discussed in the next section, the spatial distribution of permeability is a
power distribution, the flow will be channelized. These two conditions (large α and a power spatial
distribution of permeability) for channelized fracture flow are what we investigate in this paper.

2.1.1. The Connection–Condition Explanation for a Lognormal Distribution in Permeability

The reason that a normal distribution in porosity magnitude can lead to a lognormal distribution
in permeability magnitude can be understood if it is recognized that permeability requires a connection
condition to be met. For the current discussion, this connection condition is that fractures (or pores)
must be able to pass fluids onward to other fractures (or pores).

Shockley (1957) [15], among others, illustrated how physical/statistical observables (events)
that are normally distributed can interact conditionally to create other observables (events) that are
lognormally distributed. His simple example asked why relatively few authors publish the bulk of
scientific papers. He proposed that eight author traits are necessary to produce a publication: (1) ability
to select problems; (2) competence to work on them; (3) ability to recognize a result; (4) ability to
prepare a manuscript; (5) ability to present results adequately; (6) ability to profit from criticism;
(7) determination to submit a manuscript; and (8) ability to respond to referees’ criticism. Assuming
each author trait is normally distributed through a population of scientists, the conditional nature of
the final ‘event’, the publication of a scientific paper, depends on the product rather than the sum of
the component traits. If p1 is the probability for trait 1, p2 for trait 2, etc., then P = p1* p2* . . . * p8 is
the probability of publication, and only a few authors will possess all the traits needed for successful
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publication. Successful authors will be rare, and the distribution of author publications will have
a long tail: few scientists meet the connection condition of having all eight traits, so they publish a
disproportionate share of scientific papers.

Permeability requires that pores and fractures be connected. As the scale or volume of interest
becomes larger, there will be more and better connections between pores, and longer and more
permeable fractures within a given volume, and the probability that some subset of pores or fractures
will be connected will increase with increasing volume. For example, given n independent fractures in
a volume, simple counting shows there are n! = n* (n-1) * (n-2) * ways to connect them. If the number
of pores or fractures increases by δn, the probability of connection will increase: δln(n!) = ln([n+δn]!) −
ln(n!) ≈ δn ln(n). Since ln(n) changes more slowly than n, it is reasonable to assume that δln(n!) ∝ δn
Associating n with ϕ, and n! with κ, we find δln(κ)∝ δϕ, as shown in Equation (1), above. We thus
see that, if permeability is viewed in terms of connections of pores or of fractures, it follows that a
change in the number of pores (pore connections) or in the number of fractures will lead to a change in
ln permeability.

2.1.2. Spatial Properties at the Critical State

Critical state physics principles can account for how variations in permeability become distributed
spatially. This distribution is the second and final piece of information needed to determine whether
the departures of ln permeability from its mean will lead to flow channeling.

One example is the application of critical state physics to the phenomenon of opalescence.
Opalescence is the clouding of an otherwise clear liquid such as CO2 at its critical temperature and
pressure. Observed almost 200 years ago, this phenomenon was understood 100 years later to be
related to spatial optical index fluctuations in the critical liquid which scatter light, thereby clouding
the liquid. In the last 50 years, the amplitudes of these fluctuations have been found to be power law
distributed as a function of their physical length scale. The longer the length scale of the fluctuation,
the larger the amplitude of its density change. For example, if the density variations were decomposed
into their Fourier components, the longer wavelengths would have a greater amplitude. The square of
the amplitude might vary as 1/k, where k=2π/ λ, where λ is the wavelength of the Fourier component.

Properties that vary spatially in a power law 1/k fashion are scale invariant in the sense that you
cannot deduce scale in an image of the material that contains the property. In the case of opalescence in
a clear liquid, the pattern of optical index variations captured in a photo frame of tenths of a millimeter
on a side looks the same and is statistically the same as that captured in frames that are millimeters
on a side. Furthermore, the onset of density variations and the clouding they cause is related to a
“structure function” such as ε = (T – Tc)/Tc, where T is the system temperature, and Tc is the critical
point temperature (e.g., [16]). Importantly, the opalescence is clearly related to the proximity to the
critical point and not to other properties of the fluid.

The critical-state percolation model [17,18] provides additional insight. In the simplest version of
a percolation model, nodes in a square grid are connected to their neighbors by bonds that are either
open (and allow flow between nodes) or closed (and allow no flow). If open bonds are randomly
assigned according to some probability, there is a critical fraction of open bonds at which at least
one pathway of conducting bonds spans the sample. Near this critical sample-spanning fraction,
percolation model properties such as permeability, electrical conductivity, and diffusion coefficient are
found to be power functions, and universally depend more on spatial dimension than the morphology
(internal construction) of the medium [18]. This potentially greatly simplifies understanding rock
properties. The flow backbone in the sample-spanning cluster is found by deleting all the dead-end
conducting bonds where no flow occurs. The flow backbone provides a basis for the depiction of
backbone fracture seismic flow structures shown in the bottom section of Figure 1. Note that the
seemingly dead-end backbones of flow in Figure 1 could connect to overlying or underlying depth
slices through the volume, or could discharge into a broadened flow.
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2.1.3. The Critical State of the Earth’s Crust

A major insight of the late 20th Century in the Earth Sciences is that the earth’s crust is stressed by
plate tectonic forces, such that it is in a state of constant incipient failure [19]. The brittle crust is riddled
with fractures that are always at or near mechanical failure. Fractures are power scaling or scale-invariant
characteristics of rock [11]. Geologists must place a hammer or some other object of known scale
in a picture of veins or fracture traces to indicate their scale (e.g., [11]). Leary et al. (2018) [13] have
shown that the αϕ0 parameter in Equation (2) above, plays the same role in the deformation of the
earth’s crust as the critical temperature plays in opalescence. If αϕ0 is between 3 and 4, the crust is in a
state of constant incipient failure. The result is that the spatial distribution of fractures is power law,
and it follows that the spatial distribution of permeability is power law. Barton, Camerlo, and Bailey,
1997 [20] have shown that the distribution of fracture trace lengths is also power scaling. Leary et al.
(2018) [13] show that αϕ0 is between 3 and 4 for a wide variety of sedimentary rock, which means that
they are in a state of incipient failure.

2.1.4. The Power Exponent of Permeability

Prior to the invention of FS methods, it was not possible to image fracture permeability directly to
determine its location and spatial distribution. However, permeability proxies such as the mineral
alteration caused by fluid flow through fractures and the size distribution of microearthquakes, can be
used to infer the power exponent that characterizes the spatial distribution of fractures in rock [11].
The permeability power exponent can also be inferred from Equation (2) for a pink noise spatial
variation in porosity or by the direct field mapping of fractures.

Figure 5 shows how the square of the amplitude (spectral density) of well-log measurements
of fracture density, porosity, and fluid-flow-related mineral alteration fall off as the spatial scale
of measurement (frequency) decreases. The variation in signal strength with depth, measured by
well-logs, is Fourier transformed. The logarithm of the square of the amplitude (fluctuation power of
the signal, S(k)) of each Fourier component is plotted against the logarithm of the spatial frequency, k,
of the component measured in cycles/km (or any other units of measure, since the log slope is not
affected by the units). The spectral density method is well described by Malamud and Turcotte
(1999) [23]. All the properties related to fluid flow, plotted in Figure 5, show approximately a pink
noise, scale invariant, 1/k power distribution.
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are from a sand-shale well-log provided to us courtesy of R Slatt [21,22]. The power-scaling exponent 
is shown in the red box at the upper right of each plot. 

Figure 5. Time-series analysis well-log properties related to flow in fractures. From top left to
bottom right, these properties are: acoustic velocity, gamma ray intensity, potassium abundance,
potassium-thorium abundance, neutron porosity, thorium abundance, uranium abundance, mass
density correlation, and mass density. In all these panels, the spectral density S(k) (y-axis) falls off

with frequency as ~1/k, where k is spatial scale-length measured in number of cycles per km (x-axis).
Data are from a sand-shale well-log provided to us courtesy of R Slatt [21,22]. The power-scaling
exponent is shown in the red box at the upper right of each plot.
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2.1.5. The Flow Significance of the Distribution of Permeability

Figure 5 shows that down hole log measurements related to flow in fractures are power-scaling
with an exponent of approximately −1:

S(k) ∝ 1/kβ, where β = 1. (4)

This value of the power exponent, β, is intermediate between zero slope of randomly distributed
white noise and the slope of two of red noise (the Brownian noise, obtained by taking the running sum
of randomly distributed spatial properties). A power spectrum with a slope of one is called a pink noise.
Equation (4) shows that, for pink noise, when k becomes smaller (e.g., the number of Fourier cycles per
km is fewer and the variation extends over a larger distance), the signal power increases. For a pink
noise spatial distribution of permeability, as the volume of rock becomes larger, it is increasingly
likely that a permeable channel will short-circuit flow across the entire observed volume. We show
this below by first discussing how white and pink noise distributions of porosity differ, and then use
Equation (2) to convert a pink noise porosity distribution to a pink noise permeability distribution and
address channeling.

Figure 6 contrasts white and pink noise distributions in porosity. The plots on the left side of
Figure 6 depict a hypothetical white noise porosity distribution. The top image is a depth slice map of
porosity. The middle plots the porosity along an arbitrarily directed hypothetical well-log through the
depth slice map shown above. The Fourier power spectrum S(k) of this porosity well-log is plotted as a
function of wave number k on the abscissa in the bottom image. The white noise is generated from a
standard pseudo-random number generator in Matlab computational software.
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Figure 6. (a): Spatially uncorrelated and (b) correlated hypothetical porosity models. (Top): Map
views of porosity variation indicated by color. (Middle) Representative synthetic porosity well-logs
in an arbitrary direction through the porosity map view images above. The ordinate is distance and
the abscissa is the magnitude of porosity. (Bottom): Power spectrum of synthetic well-log porosity,
plotting the square of harmonic amplitude (ordinate) against spatial frequency (cycles per km) on
abscissa. Numbers are the power exponents (-β ) of the power spectra (see Equation (4)). They confirm
that the left map distribution is spatially uncorrelated white noise (β ~ 0) and the right map distribution
is spatially correlated 1/k pink noise (β ~ 1).

The working assumption behind the white noise application to crustal randomness is that,
at some suitably large scale-length, whatever is physically happening at one point in the formation
is independent of whatever is happening at any other point. That is, above a suitable scale length,
crustal flow structure is uncorrelated. The white noise uncorrelation assumption is inherent in the
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representative elementary volume (REV) method of crust flow modelling (e.g., [24–26]). Whatever the
pattern in the REV, it is assumed that one could make a 3D rubber stamp of the REV and replicate the
pattern at a larger scale by filling in the whole volume with the stamp. The largest and smallest features
remain the same, no matter how many times a pattern is repeated or how large its volume is. REV
patterns cannot increase or decrease the range of properties beyond those in the REV. REV’s thus have
no scaling larger or smaller than that contained within the REV itself. As a consequence, the entire
crustal flow volume is described by just one REV sub volume. There is no large-scale variation in
permeability in the depth slice white noise map (top right).

In contrast, the 1/k spectrum pink noise-correlated spatial distribution of porosity is illustrated
on the right side of Figure 6. The pink noise distribution of porosity is generated using discrete
Fourier transform methods, as described in ([23], p.35). The pink noise porosity distribution is then
shown along a hypothetical well-log through the depth slice image (middle right diagram) and plotted
in power spectrum form in the bottom right image. The pink noise porosity distribution reveals
different intensities at every scale length contained in the volume. The plan map shows dramatic
inhomogeneities which connect over large distances. A yellow to red band across the entire property
map can be seen in the middle of Figure 6, for example. This porosity pattern suggests that a flow
channel could pass fluid across the entire image. In contrast to the uncorrelated plan map depiction to
the left, no small portion of the correlated map is representative of any other small portion. The porosity
level and pattern at one location cannot be used to predict what will be found in another small
portion of the image. The spatial fluctuation power spectrum has a power slope of ~1 rather than
~0. Connected flow paths are expected, but the position of the spatially correlated pore-connectivity
cannot be predicted on the basis of a limited number of samples.

The tendency towards channelized flow at large scale for a 1/k pink noise porosity distribution is
demonstrated in Figure 7. Flow in this figure is calculated for a porosity distribution derived from
a normal distribution of pore sizes with a 1/k power spatially correlated distribution with a power
scaling exponent of −1, in the same fashion as described above. The porosity normal distribution
is converted to permeability using Equation (2), a pressure gradient is imposed across the spatial
permeability distribution, and the resulting flow is computed using the Matlab finite-element partial
differential equation solver. The 2D grid has 300 × 300 element resolution. Arrows show both the
distribution of velocity magnitudes and flow directions in the model domain. The ±2 spread in
the natural logarithm of the flow velocity (ln|V|) in Figure 7 approximately matches the spread of
natural log permeability shown in Figures 2–4. The flow directions show that spatially correlated
porosity leads to flow dramatically channeled across the model from the high-pressure boundary to
the low-pressure boundary.Geosciences 2019, 9, x FOR PEER REVIEW 10 of 15 
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Figure 7. a. The flow field, computed for a medium with a permeability that varies by ±2 natural
log units (see Figures 2–4 well-core data) and has a 1/k spatial distribution of ln κ, shows dramatic
channeling between the high- and low-pressure boundaries. b. Distribution of natural log-well log-flow
velocity, ln (V), where V is in arbitrary units
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2.1.6. The Power Exponent of Permeability from Two-Point Analysis of Permeability

Figures 2–4 suggest a mean value of φ = 0.2 ± 0.1. Assuming a critical state crust with αφo = 4,
it follows that α = 20, and, since α = σlnκ/σϕ, σlnκ= 2, then whether ln κ has a 1/k crustal scaling can be
tested by two-point spatial correlation methods. This analysis shows a power law separation exponent
of −0.5. This corresponds to a Fourier power spectrum slope of 1/k for the ln permeability field [10,27].

2.1.7. Power Law Exponent of Permeability from Microearthquake Distributions

Over 18,000 m3 of water was recently injected at ~6 km depth in Finland to stimulate flow for
deep geothermal heat extraction [28]. Over 54,000 microearthquakes (−1 < M < 1.9) resulted from this
stimulation, of which 6150 were located and characterized. These events have a two-point correlation
power law separation radius exponent of between −0.5 and −0.6 [10], which corresponds to a Fourier
power spectrum slope of 1/k.

2.1.8. Power Law Exponent from Field Mapping of Fractures

Barton (1995) [11] reported on outcrop fractures mapped at 17 locations at scales from centimeters
to kilometers. He found that fracture length had a fractal dimension of D~1.5.(range 1.4 and-1.7) Since
fractal dimension is related to the exponent β as 2β = 5-2D ([23], p30), Barton found β ~ 1 from outcrop
mapping. A β = 1 corresponds to a 1/k distribution, since, by convention, β is the negative of the
exponent of k.

2.1.9. Power Exponent from Analysis of Fracture Seismic Images

The flow backbone shown in the bottom image of Figure 1 consists of connected linear segments
with different levels of fracture seismic emission intensity and physical length. Histograms can be
made of both relative fracture seismic segment length and FS emissions intensity, and their statistical
distributions determined. Figure 8 shows that both of these properties have lognormal (or power law,
since the roll over may simply reflect the limits of segment resolution) distributions, in which there
are long fracture seismic intensity segments, and high FS emissions intensities that fall far outside of
normal distributions, i.e., these distributions have long tails.Geosciences 2019, 9, x FOR PEER REVIEW 11 of 15 
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Figure 8. (Left) Normalized length distributions of linear fracture seismic intensity segments from
four different reservoirs: (Clockwise) Marcellus, Utica, East Asia, Wayland. Linear backbone segments
can be seen in the fracture seismic map slice in the bottom image in Figure 1. (Right) Normalized
histograms of seismic fracture emission intensity recorded shale reservoir fracks, above. Data are from
Lacazette et al. (2013) [29].
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2.2. Flow From a Well: What Is at Stake

Figure 9 illustrates what is at stake in practical terms in the description of permeability as both
lognormal and 1/k distributed. The figure depicts flow from a well to the sides of the computation
domain, where the injected fluid is allowed to freely escape the system. The figure was generated by
Matlab finite-element methods for different values of β and α in Equations (2) and (4). Uncorrelated
(β = 0) and correlated (β = 1) porosity distributions are assigned to 105 unstructured elements with the
grid resolution increasing strongly toward the injection well. Corresponding permeability was derived
from porosity assuming α = 1 or 30. The mean porosity is selected such that αφ0 ~3 to 4 in all panels.
The method of flow computation is the same as is used to simulate the flow vectors shown in Figure 7.

If the permeability has little variation around its mean (small σlnκ), the flow proceeds radially
away from the well (lower two images) regardless of whether the ln permeability (and porosity) is
spatially ordered as pink (β =1, 1/k) or white (β =1, random) noise. However, if the magnitude of
permeability variation around its mean is of the order shown in Figures 2–4, and the ln permeability is
spatially ordered (1/k), flow from the well occurs through a spatially correlated dendritic or filamentary
pattern (top left image). The flow does not have this pattern if the ln permeability distribution is
uncorrelated (white noise), even if the permeability has a large spread from its mean (top right image).
Both substantial permeability inhomogeneity and a pink noise spatial ln permeability distribution are
required to produce the channelized/filamentary flow shown in the top left panel of Figure 9.Geosciences 2019, 9, x FOR PEER REVIEW 12 of 15 
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Figure 9. Flow calculated from a central well to free-flow boundaries where it escapes the system
for different values of α in Equations (2) and (3) and β in Equation (4). Color indicates the relative
magnitude of the fluid velocity (red low, purple high). Flow channeling (upper left panel) requires
that both a large spread in ln κ from its mean (e.g., α =30) and a distribution in permeability that is pink
(β = 1). The variation in the magnitude of permeability from its mean can be large, but cannot produce
channel flow if its spatial variation is that of spatially uncorrelated white noise (top right panel).
The permeability distribution can be 1/k (pink noise) but cannot produce channel flow unless the
variation in ln permeability is also large (bottom left panel). When the permeability distribution is white
and the spread in ln permeability small, the flow from the well is of course uniform (bottom right panel).
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The earth’s crust meets both these criteria for channelized flow (permeability inhomogeneity
and pink noise, scale invariant, spatial ln permeability distribution) as the following references in
various areas attest: oil/gas (USEIA 2011), geothermal [30], mineral deposition [31–36] and trace
elements [37–40]. The spatially heterogeneous, length-scale dependence of permeability is documented
from lab-scale cm to reservoir-scale km [8,41–45]. The normal distributions, often assumed for modeling
and analysis of flow in the earth’s crust, offer no formalism for dealing with the spatial variations
(channeling) observed in the actual flow system (e.g., [21,22,46–55]).

3. Summary and Discussion

Flow measurements are difficult to make at even a few meters from a drill hole. However, we can
infer the characteristics of flow far away from the wellbore from the observed variation in permeability
about its mean and from the observed spatial distribution of permeability. Our analysis proceeds from
the observations that (1) variations in crustal porosity and pore connections are invariably associated
with variations in the logarithm of crustal permeability (δϕ ∝ δ lnκ) and (2) the Fourier spectral power
fluctuations in permeability magnitude (and all rock properties, micro-earthquakes, etc., associated
with flow in fractures) scale inversely with spatial frequency (1/k).

Integrating the first observation produces an exponential relationship κ ≈ κ0 exp(α(ϕ−ϕ0)),
in which the variation in permeability magnitude relative to its mean is specified by a parameter
α = σlnκ/σϕ. The permeability in the Earth’s crust has a substantial spread and the Earth’s crust
is critically stressed which means that αφo = 3 to 4 and permeability has a 1/k (pink noise) spatial
distribution. Consequently flow in the crust will become increasingly channelized as the distance of
the flow increases.

The relationships described in this paper are physically fundamental. A connection condition
explains why changes in porosity or the number of fractures in a volume are related to changes in log
permeability magnitude. The pink noise spatial distribution of permeability is the distribution for
which scale cannot be determined from observations. Geologists have long been aware that geological
observations are scale invariant [56,57]. The parameter combination αφo = 3 to 4 defines the critical
point of failure for the crust, for which this scale invariance will pertain.

Critical State Physics studies show that near the point of critical failure many parameters have a
pink noise spatial distribution and that their magnitudes depend more on the proximity to critical failure
than to other factors [18]. This greatly simplifies understanding crustal permeability. That fractures
are closely involved in the critical state of the crust may not be surprising. Fluid-filled fractures are
the weakest element in the crust. The crust may be in a critical state because, in this state, fluids can
move, as required by compaction and tectonic deformation, through permeable pathways at all scales
(millimeters to kilometers). Fluids may control crustal properties more than presently appreciated.

The framework described in this paper is also of great practical importance. Flow channelization
poses a risk to many engineering and commercial pursuits. That flow channelization must be expected
in the Earth’s crust as the distance of flow increases is thus significant. The fact that flow channels
might be mapped by fracture seismic methods, as described by Sicking and Malin (2019) [1], means
that, for the first time, the location of the major flow channels at a particular site can be determined
and specified in models. The self-similar nature of permeability and the standard deviation of ln
permeability from its mean allows the flow-field to be modelled in a statistically realistic way at finer
scales. The combination of specific flow channel modeling with statistically realistic modeling of the
finer details could produce more realistic and useful models of subsurface fluid flow for reservoir
development and management, contaminant remediation, geothermal energy extraction, and many
other purposes.
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