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Abstract

An accurate prediction of the thermal conductivity of reservoir rocks in the subsurface is extremely important for a quantitative
analysis of basin thermal history and hydrocarbon maturation. A model for calculating the thermal conductivity of reservoir

rocks as a function of mineral composition, porosity, fluid type,
experimental data. The study indicates that thermal conductivi

and temperature has been developed based on fabric theory and
ties of reservoir rocks are dependent on the volume fraction of

components (minerals, porosity, and fluids), the temperature, and the fraction of series elements (FSE) which represents the
way that the mineral components aggregate. The sensitivity test of the fabric model shows that quartz is the most sensitive
mineral for the thermal conductivity of clastic rocks. The study results indicate that the FSE value is very critical. Different
lithologies have different optimum FSE values because of different textures and sedimentary structures. The optimum FSE
values are defined as those which result in the least error in the model computation of the thermal conductivity of the rocks.
These values are 0.444 for water-saturated clay rocks, 0.498 for water-saturated sandstones, and 0.337 for water-saturated
carbonates. Compared with the geometric mean model, the fabric model yields better results for the thermal conductivity, largely
because the model parameters can be adjusted to satisfy different lithologies and to minimize the mean errors. The fabric model
provides a good approach for estimating paleothermal conductivity in complex rock systems based on the mineral composition

and pore fluid saturation of the rocks.

1. Introduction

Knowledge of the thermal conductivity of fluid-filled
rocks is extremely important to petroleum geologists,
geophysicists, and geochemists from both theoretical
and practical points of view. Many important organic
and inorganic geochemical reactions in subsurface,
such as hydrocarbon thermal maturation, illite/smec-
tite transition, and feldspar alteration, are significantly
controlled by geothermal temperature which is a func-
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tion of the thermal conductivity of the sediments and
the basin heat flow. Subsurface temperatures also may
provide important constraints on fault and fluid move-
ments, if temperature anomalies related to variations in
sediment thermal conductivity can be confidently
removed (Luo et al., 1994). Therefore, an accurate
prediction of sediment thermal conductivity and
knowledge of the uncertainties of that prediction are
needed; otherwise, even the most sophisticated and
appropriate model for analyzing thermal history and
maturation level may fail when applied to real basins
(Blackwell and Steele, 1989). However, precise meas-
urements of rock thermal conductivity as functions of

margins

) case of

Hrawings,

publisher

hanges or
|
TX 78249
ostfach 10
may be of

1s. The fax

d for publi-
b publisher.

5

ansity (HD)
DD) before
& and figure
in the word-
Wang PC,
ir cases the
Ef computer
jat the disk
eep the lay-
ra words.



322 M. Luo et al. / Journal of Applied Geaphysics 32 (1994) 321-334

temperature, porosity, mineral composition, and satu-
rated fluids are very difficult and costly, even when
satisfactory samples are available. One solution is to
develop a model that can accurately predict rock ther-
mal conductivities based on rock physical properties
obtained from well logs, petrology studies, and exper-
iments. A number of published studies on determina-
tion of the thermal conductivity of reservoir rocks
(Asaad, 1955; Zierfuss and van der Vliet, 1956; Kunii
and Smith, 1960; Anand, 1971; Keese, 1973) have
been reviewed by Somerton (1992).

In previous studies, efforts have been made to predict
the thermal conductivity of shales and sandstones
through measurements on various shales, siltstones,
and sandstones. These models are usually derived by
correlating some physical property, such as porosity,
density, electrical resistivity, permeability, fractional
content of quartz, or sonic velocity with a known value
of thermal conductivity through regression, least-
squares, or some other fitting method (Anand, 1971;
Chu, 1973; Keese, 1973; Goss et al., 1975; Beck, 1976;
Merkle et al., 1976; Evans, 1977; Strack et al., 1982;
Somerton, 1992). The empirical models give good
results for a given suite of similar type rocks, but apply-
ing such models to different suites of rocks can lead to
substantial errors (Somerton, 1992). Also, the predic-
tion of the paleothermal conductivity of sediments,
including carbonates, is beyond the capability of the
various empirical models.

The mixing-law model is another approach used to
estimate the thermal conductivity of rocks. This model
is characterized by using various ways of averaging
thermal conductivity of components with respect to
their volume fractions, such as a geometric mean model
or a fabric model. As one of the mixing-law models,
the fabric model (similar to the Ohm’s law model), is
characterized by distributing the rock components ( sol-
ids and fluids) into series and parallel elements. The
effective thermal conductivity of a composite rock is
computed using a network of elements connected in
series and parallel, which is ‘‘woven’’ into a pattern
similar to a cloth fabric. Such models have been dis-
cussed in different ways by Chan and Jeffrey (1983),
Davis (1984), Somerton (1992), and Cathles et al.
(1993). The issue is how to assign the series and par-
allel elements to characterize the different reservoir
rocks. For example, some studies treat lithology (e.g.
‘‘sandstone’’, ‘‘limestone’” etc.) and water as the basic

elements (Somerton, 1992; Cathlesetal., 1993); others
consider the mineral components and water as the basic
elements, but all lithologies have the same fabric pat-
tern (Davis, 1984).

It is not difficult to understand that rocks with the
same lithologic definition may have different thermal
conductivities regardless of their fluid saturation and
porosity. For example, sandstones with a different frac-
tional content of quartz have different thermal conduc-
tivities. In particular, a difference of 0.1 content fraction
of quartz will result in a difference of about 1 mcal/
cm-s - °C in thermal conductivity of sandstone (Somer-
ton, 1992). Since different lithologies have different
textures and sedimentary structures, the fabric patterns
for different rocks should not be the same. The purpose

~ of this paper is to develop a fabric model which uses

mineral and fluid components as the basic elements to
calculate thermal conductivity for different rocks at
different temperatures. The geometric model, another
widely used mixing-law model, will be discussed in
comparison with the fabric model. As aresult, the fabric
model has been concluded to offer the best approach
for estimating paleothermal conductivities for simula-
tion of geothermal history.

2. Thermal conductivities of minerals and fluids

Numerous measurements of thermal conductivities
of common rock-forming minerals have been published
(Sass, 1965; Horai, 1971; Kappelmeyer and Haenel,
1974; Weast and Astle, 1980). These data are valuable
and important because values of thermal conductivity
for individual mineral components constitute the
framework needed to calculate thermal conductivity of
composite rock solids. Table 1 lists the thermal con-
ductivity values at 25°C and 1 atmosphere for 48 rock-
forming minerals based on the work of Horai (1971),
Kappelmeyer and Haenel (1974), and Davis (1984).
This list includes many minerals not commonly
encountered in sedimentary rocks. Fig. 1 shows a chart
illustrating the range of thermal conductivities for the
common sedimentary minerals. This figure reveals sev-
eral pertinent points regarding the variations among
these minerals:

(1) The thermal conductivity of pure quartz is high,
about 18 mcal/cm-s-°C, relative to most other
common minerals. Only pyrite, which is gener-
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Table 1
Thermal conductivity of rock-forming minerals at 25°C and 1 atm
(data from Horai, 1971; Kappelmeyer and Haenel, 1974; Davis,

1984) Wt

Mineral

Conductivity
(mcal/cm-s-°C)

Albite 4.41
Amphibole 7.50
Anhydrite 11.37
Anorthite 4.01
Apatite 3.30
Aragonite 5.35
Biotite 4.83
Bronzite 9.99
Calcite 8.58
Chert 10.82
Chlorite 12.30
Diopside 11.79
Dolomite 13.16
Epidote 6.70
Fluorite 22.72
Forsterite 12.30
Gibbsite 6.21
Gypsum 3.00
Halite 14.60
Hornblende 6.71
Hematite 26.95
Tllite-Mica 5.50 2.19
Tlmenite 5.70 .39
Kaolinite-Sericite 6.60 275
K-Feldspars 5.70
Magnetite 12.18
Magnesite 13.94
Microcline 5.95
Mixed layer clay 5.70
Muscovite 5.54
Olivine 11.60
Oligoclase 4.71
Orthoclase 5.53
Plagioclase 5.00
Pyrite 45.89
Pyroxene 10.20
Quartz 18.37
Rutile 12.20
Serpentine 8.40
Siderite 7.18
Smectite 5.70 1Y L%
Sphalerite 30.40
Sphene 5.58
Topaz 26.86
Tourmaline 10.20
Volcanic glass 3.20
Zeolites 3.51
Zircon 10.85

ally not abundant, is higher (~45 mcal/
cm-s-°C). The thermal conductivities of feld-
spars, the second most important group of sedi-
mentary minerals in clastic rocks, average only
about 5 mcal/cm-s-°C. The common clay min-
erals of illite, smectite, mixed-layer clays, and
kaolinite also fall in the range of 5-7 mcal/
cm-s-°C.

(2) The carbonates calcite, dolomite, and siderite
(but not aragonite) have thermal conductivities
significantly higher than the feldspars and clays,
ranging from ~7 mcal/cm-s-°C (siderite) to
~ 13 mcal/cm-s-°C (dolomite).

(3) Hydrated phases such as gypsum and the zeolites
have low thermal conductivities, in the range 3-
4 mcal/cm-s-°C. Anhydrite is significantly
higher than gypsum, ~ 11 mcal/cm-s- °C, while
chert (10.8 mcal/cm-s-°C), a hydrated form of
quartz, is much lower than quartz.

(4) Oils (hydrocarbons) have the lowest thermal
conductivities ( ~0.3 mcal/cm-s-°C) of any
material involved in any significant volume in a
sedimentary basin, even lower than pure water
(H,0~1.5 mcal/cm-s-°C) or seawater.

Consequently, one would expect quartz-rich rocks
to have high thermal conductivities, approaching the
values associated with evaporites (11-14 mcal/
cm-s-°C), while arkosic rocks would be lower, prob- -
ably in the range 8—10 mcal/cm- s - °C. Because arkosic
rocks contain large amounts of quartz, their average
thermal conductivities can be expected to be about the
same as pure carbonate rocks. In general, sandstones
may be expected to have either lower or higher thermal
conductivities than carbonates, depending upon the
quartz content. However, the most important implica-
tion is that rocks saturated with hydrocarbons can be
expected to have much lower thermal conductivities
than rocks saturated with aqueous fluids (Luo et al.,

1994) and that the loss of fluids by compaction and/

or mineral diagenesis such as clay mineral dehydration

can be expected to have an important influence on the

thermal evolution of a basin (Luo, 1992).

3. Fabric model

The fabric model predicts the effective thermal con-
ductivity of a rock based on a weighted average of the
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Conductivity (mcal/cm-s-°C)

Fig. 1. Bar chart showing thermal conductivities for the common sedimentary minerals.

thermal conductivity of its mineral elements arranged
in series and parallel relative to the direction of heat
flow (Davis, 1984; Somerton, 1992). For the typical
fabric model discussed in most publications, the solid
rock matrix and the pore water are usually considered
to be the two basic elements of the model. The thermal
conductivity, K, may be expressed as:

K = FSE[(1-¢)K, + ¢K,]

+(-rspyLz® 8

where FSE is the fraction of series elements, X, is the
averaged thermal conductivity of the solids, K, is the
thermal conductivity of water, and ¢ is porosity. Eq.
(1) usually assumes that specific geometrical effects,
such as the shapes of the pore spaces and the solid
grains, are absent or can be ignored and that all pore
spaces are water saturated.

If the element components are only in series
(FSE=1), the upper bound of the thermal conductivity
is:

K= (1-¢)K, + ¢K; (2)

If the element components are only in parallel
(FSE=0), the lower bound of the thermal conductivity
is:

(1-¢) ¢
K, K;

These bounds are also called the Wiener bounds (Chan
and Jeffrey, 1983) or the arithmetic (upper) and har-
monic (lower) means, respectively (Somerton, 1992).

As a practical matter, it is difficult to obtain definitive
average values of thermal conductivities of the various
types of rocks because of the lack of systematical meas-
urements of the variability in fraction mineral content
for similar lithologies. To overcome this difficulty in
this study, we assume that the minerals which compose
the rock and the saturated fluids constitute the basic
fabric elements. Then Eq. (1) can be modified to the
form:

K= 17! (3)

m . 3 nz N
K = FSELY (1-$)£K.+ Y ¢£K:]

i=1 im]

N SR
T(I=FSE)[Y. (1-d)+ Y ¢=] (4)

I=i K; i=1 K
where n, is the number of mineral components of rock,
K{ is the thermal conductivity of the ith solid mineral,
& is the volume fraction of the ith mineral in the total
weight of minerals, n, is the number of types of fluids
saturated in the pore space, and K} is the thermal con-

ductivity of the ith fluid type with saturation &. The
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Fig. 2. Schematic diagram showing the fabric model in which the
rock components (minerals and fluids) are ‘‘woven’ into a series
and parallel pattern relative to the direction of heat flow. The fabric
pattern changes with the fraction of series elements (FSE). A fabric
pattern of half parallel and half series elements (FSE=0.5) is
assumed in this diagram.

fabric model of Eq. (4) is schematically illustrated in
Fig. 2 in which a fabric pattern of half parallel and half
series elements (FSE = (.5) is assumed. Eq. (4) makes
it possible to calculate the thermal conductivity of a
reservoir rock based on its quantitative mineral com-
position instead of its lithological definition. In this
way, we can account for variations in the thermal con-
ductivity of rocks of similar lithologic classification. In
addition, the modified fabric model of Eq. (4) has two
advantages: first, reliable measurements of thermal
conductivities for most rock-forming minerals are
available; second, it is easier to identify the mineral
components and their volume fraction by petrographic
and X-ray techniques than it is to measure the thermal
conductivity of the rock solid.

Usually, the measured values of thermal conductiv-
ity for rock solids and minerals are made only under
room temperature conditions. In particular, the values
listed in Table 1 are valid only for a temperature of
~25°C. To determine the paleothermal conductivity
of reservoir rocks, we must know the thermal conduc-
tivity of the rock at different temperatures. Davis
(1984) proposed an approach to calculating the ther-
mal conductivity of water-saturated sedimentary rocks
as a function of temperature by fitting the data of Birch
and Clark (1940) to rocks of known mineralogical
composition. Using this approach, both K, and K, can

be calculated as functions of temperature using the rela-
tions:

1
K = [—I-(—(2.142 — 0.0818VTg) + 0.0172yTg
0

-0.2978] ! (5)

and
T, T,

K, = 2231(=)" — 0.8812(=%)25 (6)
TO TO

where Ty is the absolute temperature (K), T,=273.15
K, and K, is the mineral thermal conductivity at
Tx=298.15 K. Eq. (5) gives the rock grain thermal
conductivities as function of temperature if the 25°C
thermal conductivities are known. Eq. (6) can be used
to predict values of the thermal conductivity of water
at any temperature between 0°C and about 330°C
(Davis, 1984). By incorporating Egs. (5) and (6) into
the modified fabric model of Eq. (4), one can estimate
the paleothermal conductivity over the temperature
range of about 0 to 330°C. The modified fabric model
also ignores the effect of the hydrostatic pressure on
thermal conductivity because the laboratory measure-
ments indicate that an increase in thermal conductivity
due to an increase in pressure is only about 0.14-0.28%
per MPa (Somerton, 1992).

Table 2
Mineral composition of rocks used in this study (from Somerton,
1992; Davis, 1984)

Rock component Volume fraction

Abu Gabra Abu Gabra Kern River

Shale Sandstone Sandstone
Quartz 0.34 0.83 0.341
Orthoclase - - 0.010
K-Feldspars 0.02 0.05 -
Plagioclase 0.09 0.01 0.205
Kaolinite/Sericite 0.20 0.10 0.257
1llite/ Mica 0.10 - -
Smectite 0.10 0.01 -
Chlorite 0.15 - 0.070
Homblende - - 0.041
Sphene - - 0.021
Epidote - - 0.018
Others - - 0.037
Total 1.0 1.0 1.0
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Fig. 3. Dependence of thermal conductivity on fraction of quartz
content. Note that there is a large variation in thermal conductivity
for lithologically defined *‘sandstone’” at 25°C.
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Since the mineralogical compositions and the vol-
ume fractions of the water-saturated Abu Gabra sand-
stone and shale are well known (Table 2), these rocks
will be used to illustrate the application of the fabric
model. The thermal conductivity of Abu Gabra sand-
stone has been calculated as a function of the volume
fraction of quartz, assuming that the volume fractions
of the non-quartz minerals in the sandstones decrease
in their original ratios. Fig. 3 shows the solid and bulk
thermal conductivities as functions of quartz fractional
volume as the fraction of quartz increases from 0.1 to
1.0 at temperature of 25°C. If rocks with quartz content
> 50% are defined as sandstones, the thermal conduc-
tivity of the Abu Gabra sandstone will vary from 10.9
to 18.7 mcal/cm-s-°C at porosity =0 (solids) and
from 5.2 to 7.6 mcal/cm- s - °C for the water-saturated
bulk rock having a porosity of 30%. Such a large var-
iation in thermal conductivity for ‘‘sandstones’’
implies that it would be difficult to determine a standard
thermal conductivity for lithologically defined ‘‘sand-
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Fig. 4. Parameter variation in the thermal conductivity of Abu Gabra sandstone as a function of temperature, porosity, and FSE based on the
fabric model. Al samples are saturated with water.
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Fig. 5. Plot of thermal conductivity as a function of the fraction of
series elements ( FSE) and porosity, based on the fabric model. Pore
saturating fluid is pure water.

Fig. 4 shows the temperature dependence of thermal
conductivity as a function of temperature, porosity, and
FSE and computed from Egs. (4)~(6) of the fabric
model. Generally, the thermal conductivity varies
inversely with temperature; however, for smaller FSE
and higher porosity, say, FSE =0 and porosity = 30%,
temperature has little effect on thermal conductivity.
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Fig. 5 shows that, at a fixed temperature, the fabric
model of the sandstone thermal conductivity is propor-
tional to FSE. For example, the fabric model indicates
that the thermal conductivity of Abu Gabra sandstone
will increase from about 7.2 mcal/cm-s-°Cat FSE=0
toabout 13 mcal/cm-s-°Cat FSE= 1 for ¢=10% and
T=50°C. It is obvious that FSE is a very sensitive
parameter in the fabric model.

An increase in porosity results in a decrease in bulk
rock thermal conductivity with the magnitude being
dependent on FSE. For example, Fig. 5 also shows that,
as porosity increases from 0 to 30%, the bulk rock
thermal conductivity decreases by about 4 mcal/
cm-s-°C (20%) for FSE = 1.0 and, more significantly,
by about 12 mcal/cm-s-°C (60%) with FSE=0 at a
temperature of 50°C.

The thermal conductivities of the Abu Gabra shale
and Kern River sandstone listed in Table 2 were also
calculated using the fabric model and are plotted in Fig.
6. It is interesting to note that the Abu Gabra shale and
Kern River sandstone have almost the same variation
curves of thermal conductivity vs. temperature and FSE
(Fig. 6), which implies that the thermal conductivity
of shale is not always smaller than that of sandstone.
The results shown in Fig. 6 also imply that thermal
conductivities for rocks with the same lithologic defi-
nition of ‘‘sandstone’’ may vary significantly. Under

20
18 L Abu Gabra Shale Abu Gabra Sandstone Kem River Sandstone
0=20% 0= 20% ! 0= 20%
18 [~ (FSE-iraction of series elements) \ B
S L FsE=00 [\ s
2 — —— FSEDY PN f
------ FSE=03
§ nf —-— 05 [N\ -
] X — — — E8E07 } N\ O
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Z2 gp Vo S T b S
5] ~ \~\\ Sl ~O Ui e O
5 . ~ ST P -~ o - \\\\ - ST
LS -~ ~ ¥ . Y~ -~ ST
< 6 ke \-\\:;—‘\q*\ AT S N ~— = TEeo |
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Fig. 6. Changes in the thermal conductivities of shale and sandstone as functions of temperature, porosity, and FSE based on the fabric model.

Pore saturating fluid is pure water.
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the same temperature, FSE, and porosity conditions,
for instance, the thermal conductivity of the Kern River
sandstone is almost equal to that of the Abu Gabra shale
and is much lower than that of the Abu Gabra sandstone
because of their different volume fractions of mineral
composition (Fig. 6 and Table 2). For the fabric model,
it is obvious that the thermal conductivity of water-
saturated rocks will depend not only on temperature
and porosity, but also on the volume fraction of mineral
components and the fraction of series elements (FSE).

4. Parameter sensitivity and accuracy of the
model

The most critical factor of the fabric model is the
fraction of series elements, FSE, which essentially
dominates the computation of the thermal conductivity
of the rock. As shown in Figs. 3 and 4, different FSE
values result in a significant difference in the rock ther-
mal conducttvity with other factors held constant. In
previous studies (Davis, 1984; Cathles et al., 1993),
half series and half parallel elements (FSE=0.5) were
used for their fabric models. The questions are: Is 0.5
the best FSE value for all of lithologies in the fabric
model? If so, how good are the modeling results?

The reliability of the fabric model with different FSE
values has been tested against the experimental thermal
conductivity measurements of 111 water-saturated or
moist samples reported by Brigaud and Vasseur
(1989). The samples used in their analysis were taken
from cores, cuttings, outcrops, and artificially recom-
pacted samples which originally included two sets:
non-clay samples and clay samples. The volume
fractions of mineral composition and the porosities of
the samples were available and were used in the cal-
culations. The thermal conductivities of these samples
were measured at 20°C using the transient line-source
method (Von Herzen and Maxwell, 1959; Fernandez
etal., 1986), which is typically accurate to within about
5% (Brigaud and Vasseur, 1989).

Based on the volumetric mineral and porosity frac-
tions of the samples, the thermal conductivities of the
samples at 20°C have been calculated by our fabric
model, assuming that the rocks were evenly integrated
in half series and half parallel elements (FSE=0.5).
Differences in thermal conductivities between the
experimental measurements and the fabric model

results are illustrated in Fig. 7a. The analysis of relative
error, (K—K') /K, shown in Fig. 7b, demonstrates that
59% of the computational results have relative errors
of less than +10% for the various rock samples. A
statistical analysis of these results shows that the mean
and the standard deviations of the relative error are
—8.09% and 14.57, respectively, as depicted in Fig.
Tc.

To test the validity of the assumed value of FSE = 0.5
for all of the lithologies tested, three types of lithologies
are regrouped from the data of Brigaud and Vasseur
(1989) according to their predominant minerals: a clay
group (29 samples) with clay mineral content greater
than 50%, a sandstone group (35 samples) with quartz
content greater than 50%, and a carbonate group (26
samples) with calcite or dolomite content greater than
50%. The optimum FSE values corresponding to the
least relative mean error for the different lithological
groups were separately derived.

The relative mean error (K—K’)/K is the criterion
used to evaluate the modeling results because we are
interested in the best average FSE value for each lith-
ological category rather than each individual sample.
Fig. 8 shows three curves characterizing the distribu-
tion of the relative mean error versus FSE values for
the clay, sandstone, and carbonate groups. These results
indicate that the optimum FSE values corresponding to
the least mean error are 0.444 (44.4% of components
arranged in series) for clay samples, 0.498 for the sand-
stone samples, and 0.337 for the carbonate samples.
Statistics for calculated thermal conductivities using
the optimum FSE and measured thermal conductivities
for the three groups are shown in Fig. 9. Also the sta-
tistical characteristics for FSE=0.5 are given in Fig.
10 in order to show the differences between the opti-
mum FSE values and FSE=0.5. If the optimum FSE
values are used, the percentages of samples with rela-
tive errors less than +10% will increase from 58%
(FSE=0.5) to 85% for the clay group, from 50%
(FSE=10.5) to 77% for the carbonate group, and from
58% (FSE=0.5) to 61% for the sandstone group as
shown in Figs. 9 and 10 and tabulated in Table 3.
Obviously, the accuracy of predictions of the rock ther-
mal conductivities for both the clay and carbonate
groups has been significantly improved by optimizing
the value of FSE. However, there is only a small devi-
ation from FSE=0.5 for sandstone group. This is
because the sandstone group used in the analysis is
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the least mean error of clay, sandstones, and carbonates, respectively.

composed of two types of sandstones which have sig-
nificantly different thermal properties caused by
unknown factors. This is deduced from Figs. 9d and
10d in which two sub-groups of samples can be clearly
identified based on the statistics. One group has a rel-
ative mean error of about —10%, which coincidently
belongs to samples with thermal conductivity less than
10 mcal/cm- s - °C. The other group has a relative mean
error of about + 10%, which is coincidently related to
samples with thermal conductivities greater than 10
mcal/cm-s - °C. The reason for this phenomenon in the
sandstone group cannot be ascertained because of the
lack of more complete data on the original samples.
However, if the sandstone samples could be reasonably
separated on a supplemental lithological or physical
basis, better results could be obtained from the fabric
model.
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As a result of the above validation tests, the com-
putation of the thermal conductivity using the fabric
model is very sensitive to the FSE value, as shown
earlier in Fig. 8 and Table 3, which significantly affects
the reliability of the model. For example, if FSE is
changed from 0.5 to 0.444 for the clay group, the rel-
ative mean errors in computation of thermal conductiv-
ity of the clay samples will decrease from —7.26% to
0.01%. As a result, only 15% instead of 42% of the
clay samples has a computed thermal conductivity with
the relative error greater than + 10% in comparison
with the measurements, which makes the computed
thermal conductivity better. Therefore, the assumption
of a constant value, FSE=0.5, is not particularly opti-
mum for any given lithology. On the other hand, to
obtain the most accurate results, the FSE value has to

be accurate to within 10~ instead of 10~ Also, deter-
mination of the optimum FSE values for different lith-
ological categories influences the accuracy of the rock
thermal conductivity obtained using the fabric model.
This implies that FSE, although empirical, is broadly
associated with the rock composition, texture, and min-
eral grain architecture.

5. Comparison of fabric and geometric mean
models

The geometric mean model is another mixing-law
model which is also widely used to calculate the ther-
mal conductivity of rocks. This model is also based on
the mineral components and the rock porosity (Brigaud
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and Vasseur, 1989; Somerton, 1992). The geometric
mean model is typically expressed as:
K= (K)"'"?(Kp?* (7)

where K is the thermal conductivity of the bulk rock,
K, is thermal conductivity of the solid rock matrix, K

Table 3
Variation in FSE values for different lithological groups

is the thermal conductivity of the fluid, and ¢ is poros-
ity.

For the comparative analysis, we make the same
assumption as in the fabric model that the thermal con-
ductivity of the rock is affected by all of the mineral
components and each mineral component follows the

Sandstone group (35 samples)  Carbonate group (26 samples)

Factors Clay group (29 samples)
Fraction of Series Elements (FSE) 0.500 0.444
Mean of relative error (K—K')/K (%) -~7.26 0.01
Standard deviation 9.54 9.11
Samples with error < + 10% 58% 85%

0.500 0.498 0.500 0.337
—0.16 0.01 —8.64 0.01
11.42 11.38 9.10 9.73
58% 61% 50% 77%
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and K’ = computed results using the geometric mean model.

above geometric mean principle. Eq. (7) is therefore:
K = [TI(K)S1 = [TI(KH (8)

where K, is the thermal conductivity of the ith mineral
at room temperature, £ is the volume fraction of the
ith mineral, K’ is the thermal conductivity of the ith
pore fluid (water, oil, or gas) at room temperature, and
& is the fluid saturation of the ith pore fluid. For basin
modeling purposes, Egs. (5), (6), and (8) are adopted
in the geometric mean model for calculation of X', K,
and K, as function of temperatures. With these rela-
tionships, the geometric mean model may be used to
calculate the rock thermal conductivities in the subsur-
face.

In the previous discussions, the fabric model has
been developed and evaluated in detail. Here, the fabric
model and geometric mean model will be compared by
using the same three lithological groups selected from
the Brigaud and Vasseur (1989) sample data to deter-
mine the relative performance of the models for pre-
dicting the thermal conductivity.

The thermal conductivities at 20°C for the three types
of lithological samples were calculated for the geo-
metric mean model (Eq. 8) using Egs. (5) and (6)
and the mineral conductivity data of Brigaud and Vas-
seur (1989). The relative mean errors for each litho-
logical category were then calculated as shown in Fig.
11 and listed in Table 4. The results indicate that the
percentages of samples having conductivities less than
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Table 4

Comparison of the accuracy of the fabric model and the geometric mean model

Factors Fabric model Geometric mean model

Lithology Clay Sandstone Carbonate Clay Sandstone Carbonate
Fraction of Series Elements ( FSE) 0.444 0.498 0.337 - - -

Mean of relative error (K—K')/K (%) 0.01 0.01 0.01 —-8.77 ~4.47 - 8.86
Standard deviation 9.11 11.35 9.73 10.84 8.71 8.70
Samples with error < + 10% 85% 61% 7% 41% T1% 50%

1+ 10% are 41% for the clay group, 50% for the car-
bonate group, and 71% for the sandstone group. Com-
pared with the results from the fabric model using the
optimum FSE values, the geometric mean model pro-
duces a better prediction of the thermal conductivity
for the sandstone group but gives somewhat worse pre-
dictions for the clay and carbonate groups.

These results imply that the geometric mean model
is effective for the thermal conductivity of sandstone.
However, this sandstone model, which is dominated by
the more thermally conductive quartz mineral content,
is not effective for the clay and carbonate groups
because they have significant differences in rock tex-
ture and sedimentary structure which the geometric
mean model may not take into account. The thermal
conductivity values calculated from the geometric
mean model are lower than the measured values for
both the clay and the carbonate groups according to
their relative error means (Figs. 9a,b,e.f and 11a,b,e,f
and Table 4). As mentioned before, if the bimodel
sandstone samples had been better grouped based on
their mineral composition, the fabric model could
potentially give much better results by using the opti-
mum FSE values for the two different types of sand-
stones. This potential capability is important because
the grain texture and sedimentary structure, including
grain orientation, clay mineral structure, bedding, and
porosity types, apparently have a significant influence
on the thermal conductivity of rocks. The influences of
grain texture and sedimentation structure on the thermal
conductivity can be taken into account by adjusting the
FSE values for different categories of rocks. From this
point of view, the fabric model is generally superior to
the geometric mean model.

6. Conclusions

The fabric model represents a good approach for
estimating the thermal conductivity of different reser-
voir rocks based on the mineral composition, porosity,
and temperature. The model is straight forward in appli-
cation, and yields good estimates of thermal conductiv-
ity in complex fluid—rock systems; further, the model
parameters are relatively easy to obtain. Mineralogical
composition and volume fractions in the rock can be
determined using petrographic and X-ray techniques,
whereas the values of the thermal conductivity for most
of the common minerals are cataloged at 25°C. The
fabric model is a new approach that can make a more
accurate prediction of the paleothermal conductivity of
sediments and so improve our capability in basin mod-
eling.

The selection of the optimum value for the fraction
of series elements, FSE, in the fabric model is
extremely important. This study showed that FSE = (.5
is not a good choice for all rocks. This is because FSE
depicts the way in which the mineral components are
deposited and compacted into rocks. Thus, different
FSE values should be determined for different litholo-
gies to characterize their different grain textures and
sedimentation structures. Also, for maximum accuracy,
the FSE value must be stated with an accuracy of 103
instead of 10~ ! to achieve the least errors in the thermal
conductivities of rocks. The optimum average values
of FSE determined in this study are about 0.444 ( 44.4%
of components arranged in series) for water-saturated
clay rocks, 0.337 for water-saturated carbonate rocks,
and 0.498 for water-saturated sandstone rocks. The
thermal conductivity derived from the different mix-
ing-law models suggests that the fabric model yields
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better results than the geometric mean model, largely
because the fabric model is adaptable and sensitive to
different lithologies.
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