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Abstract

Large volumes of gas have vented through a north–south transect of the offshore northern Gulf of Mexico. An overview of surface and

subsurface manifestations of this gas venting is presented. This gas movement has caused extensive alteration of reservoir oils to the north of

the transect which are estimated to have equilibrated with, or been gas washed by, as much as 30 volumes of gas for every volume of oil. This

gas washing entrains and carries upward the most volatile oil components depositing them in either shallower reservoirs or venting them to

the overlying sediments and the water column. A significant amount of this gas bypasses the reservoirs and vents upward into the overlying

sediments and waters. In spite of the significant amounts of the gas involved, the venting at the seafloor appears to occur primarily through

highly localized faults and fractures. This gas discharge is spatially and temporally heterogeneous, making it difficult to estimate the actual

hydrocarbon fluxes involved. This upward gas movement leaves characteristic signatures at the sediment water interface including carbonate

pavements in older seep areas, and chemosynthetic biological communities, methane hydrates, and gas seeps in more recent long-term seep

areas. In some cases where gas venting is very recent, massive disruption of surface and subsurface sediments is observed to be occasionally

accompanied by mud volcanoes. Venting can be vigorous enough to produce methane gas bubbles, which appear to be injected rapidly into

surface waters and which may constitute a significant source of methane, a greenhouse gas, to the atmosphere.

In the northern Gulf of Mexico, gas venting is sometimes accompanied by natural oil slicks at the sea surface, which can be tracked for

many miles in non-productive areas. These gas-venting signatures are not unique to the Gulf of Mexico; similar seep features are observed in

sediments worldwide. The widespread occurrence of these seep features, which may or may not be related to subsurface oil and gas deposits,

may explain why use of surface seeps has often proved to be so controversial in oil exploration. Indeed, most seeps are probably not linked

with economic subsurface petroleum reservoirs.

The relationships between surface seep features and productive subsurface reservoirs along a N–S transect of the northern Gulf of Mexico

are presented as an example of how all surface and subsurface geochemical, geological, geophysical data might be used together to better

constrain interpretations regarding the nature and dynamics of subsurface oil and gas deposits and their plumbing in frontier areas.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Methane; Hydrate; Seep; Migration; Petroleum; Gas; Biodegradation
1. Introduction

The goals of this paper are to present an overview of the

dynamic nature of gas movement along a north–south

transect in the northern Gulf of Mexico (Fig. 1);
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demonstrate the apparent relationship between subsurface

gas movement and surface sediment seep features, and;

show how these processes might impact interpretations of

surface seepage as related to the presence of underlying gas

and oil reservoirs. The effects of Gulf of Mexico gas

movement on subsurface oil reservoirs, surface sediments,

the water column, and the overlying atmosphere are

summarized. The manifestations of dynamic gas movement

described here are not unique to the Gulf of Mexico.

Examples of similar seep features in other geographic areas

worldwide are presented to demonstrate that surface
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Fig. 1. Map of oil and gas seeps/chemosynthetic communities and recent petroleum discoveries (adapted from Sassen et al., 1993a,b). The location of N–S well

transect on upper slope of northern Gulf of Mexico is indicated by the heavy black line.
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seepage occurs very widely in some parts of the ocean floor,

particularly along the edges of continents and in ocean

margins, even when no viable producible petroleum

reservoirs appear to be present. The widespread occurrence

of these seep features, which may or may not be related to

subsurface oil and gas deposits, may explain why use of

surface seeps has often proved to be so controversial in oil

exploration. The relationship between the surface seep

features and subsurface gas migration through reservoirs

along a N–S transect in the Gulf of Mexico is presented as

one example of the relationship between surface seep

geology, chemistry, and biology, and the dynamics of

subsurface gas and oil movement into and through subsur-

face petroleum reservoirs.
2. Summary of effects of gas venting in the northern

Gulf of Mexico

Extensive research has been carried out in the offshore

Green Canyon (GC184) area of the upper continental slope

of the northern Gulf of Mexico (Fig. 1) near the Conoco

Jolliet oil field. Extensive work has been carried out in this

area, including mapping seafloor gas and oil seep features

(Fu and Aharon, 1998; Aharon et al., 1997; Brooks et al.,

1984, 1986, 1987, 1990; Kennicutt et al., 1985, 1988a,b;

Paull et al., 1989; Roberts et al., 1990a,b; 1999a,b; Roberts,

2001; Roberts and Carney, 1997; MacDonald, 1998; Milkov

and Sassen, 2003a,b), the study of biology of chemosyn-

thetic communities associated with the seeps (Brooks et al.,

1987, 1990; Childress et al., 1986; Fisher et al., 1987;

Kennicutt et al., 1985, 1988a,b; MacDonald and Joye, 1997;
MacDonald, 1998; MacDonald et al., 1994, 1990a,b; Sassen

et al., 1993a,b, 1994a,b, 1998, 1999a,b; Zhang et al., 2002,

2003), and surface gas hydrates (MacDonald et al., 1994;

Roberts, 2001; Roberts et al., 1999a,b; Sassen and

MacDonald, 1997; Sassen et al., 1993a,b, 1998, 1999a,b;

Sassen, 2001, 1999; Lanoil et al., 2001). The study area lies

within a broader general area of natural oil and gas seeps

encompassing much of the upper continental slope of the

Gulf of Mexico (Fig. 1). These natural seeps are closely

related geographically, with productive subsurface reser-

voirs, as shown in Fig. 1 (adapted from Sassen et al., 1993b).

A summary of surface and subsurface phenomena associ-

ated with the northern Gulf of Mexico gas seeps is shown

schematically in Fig. 2. These venting features produce a

substantial oil and gas flux into the overlying water column

as shown by huge oil slicks over non-oil productive areas

described by "MacDonald (1998) and MacDonald et al.,

(1993, 1996, 2002). The volumes of oil and gas vented to the

water column and to the atmosphere are probably

substantial, as discussed further in Kvenvolden and

Lorenson (2001), Kvenvolden and Rogers (2005) and

Judd et al. (2002). The venting also causes significant

alterations to subsurface sediments, which can be observed

seismically (e.g. Fig. 3 from Hunt, 1996) and in short-term

changes in the compositions of oils in reservoirs, as

discussed later in this chapter.

The interest of Cornell University and the Woods Hole

Oceanographic Institution in this area began with a project

to study subsurface migration of oil and gas along the N–S

Gulf of Mexico transect, shown in Fig. 4. The most

surprising overall conclusion of that study was that

long-term dynamic gas migration occurring throughout



Fig. 2. Summary of all gas seep related processes observed in the vicinity of Green Canyon area in the northern Gulf of Mexico, at the south end of the transect

shown in Fig. 1. The processes shown include thermogenic oil and deeper gas generation (to the left) and biogenic methane generation (to the right). Either

source of gas can then migrate upward either rapidly through faults and fractures or more slowly by diffusion through sediments into overlying oil and gas

reservoirs. In either case, most of the gas bypasses the reservoirs and migrates further upward to the sediment water interface where it can form gas (methane)

hydrate deposits (shown in white) or can be vented into the overlying water column. If methane concentrations do not reach saturation, the gas in the dissolved

phase is largely biodegraded in the water column. Where sufficient methane is present, gas bubbles form and, if they survive to within 100 m of the surface, can

be vented as methane into the atmosphere. In some cases, the bubbles are coated with oil (see Leifer and Boles, this volume). Chemosynthetic communities of

animals, shown with pink dots, tend to congregate on surfaces of gas hydrates and within bacterial mats near gas seeps.
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the transect had resulted in considerable in-reservoir oil

alteration, described in detail later in this chapter. It seemed

probable that some of this gas movement must be

contemporary and should be detectable as both gas and oil

seeps in surface sediments and in the overlying water

column. Fortuitously, the southern end of this transect is

located at Green Canyon 184, which is adjacent to the

intensively studied ‘Bush-Hill’ surface gas and oil seeps and

gas hydrate mound; the gas hydrate mound overlies the

Jolliet oil field (Fig. 1). Therefore, a relationship between

the subsurface transect gas migration and the Green Canyon

surface seeps seemed highly likely. Indeed, Brooks et al.

(1984) were the first to document the large and vigorous

biological communities associated with the seafloor oil and

gas seeps at GC184. Subsequently, other surface sediment

manifestations of these seeps were described and mapped by

various groups as described above. The organisms found in

these areas are reminiscent of the prolific chemosynthetic
biological communities that are ubiquitous in hydrothermal

vent areas (Hessler and Kaharl, 1995).

In the Gulf of Mexico, the primary food source for these

seep communities appears to be a complex chemosynthetic

community of microorganisms utilizing a coupled process

of hydrocarbon (primarily methane) oxidation and sulphate

reduction (termed anaerobic oxidation of methane, or

AOM), similar to that which has been described at a

number of other oceanic methane hydrate and seep sites

(e.g. Hinrichs et al., 1999, 2000; Hinrichs and Boetius,

2002; Orphan et al., 2001a,b). An important factor

governing how much methane is oxidized at these sites is

the rate of methane efflux, which determines the location

and type of oxidation taking place. Low rates of methane

leakage mean the oxidation is most likely occurring in the

sediments and at the expense of sulphate. Product sulphide

is then available for the macrofaunal seep communities.

High rates of methane seepage will mean that methane



Fig. 3. A three-dimensional seismic profile of a gas chimney rising from depths greater than 15,000 ft (4573 m) up through Plio-Pleistocene sediments in the

South Marsh Island area, offshore Louisiana. The gas plume is adjacent to a 7000-ft (2134-m) thick allocthonous Jurassic salt. The straight lines are faults, and

the circles and boxes are cross-line interpretations of horizons and faults (from Hunt, 1996).
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either forms a hydrate layer, if pressure and temperature

conditions are appropriate (Kvenvolden and Rogers, 2005),

or that it will reach the water column, where AOM is

subordinate, and can be oxidized using oxygen, which

yields more energy. In the latter case, macrofaunal seep

communities with aerobic methanotrophic symbionts will

dominate. For very high methane flux rates, bubble plumes

form and carry the methane rapidly up through the water

column. If this process allows significant methane ejection

into about the top 100 m of the water column, a significant

proportion of methane would escape biodegradation and be

ejected into the atmosphere via surface air–sea mixing

(Broecker and Peng, 1982).

Roberts and Carney (1997) describe three general

patterns of seepage: (1) long-term seepage that produces

giant carbonate mounds (commonly tens of metres high);

(2) ongoing intermediate seepage rates that support

extensive biological communities, carbonate crusts, and

methane hydrates; and (3) very recent oil and gas ejections
that produce huge (often a kilometer or more in diameter)

mud volcano craters with no associated living biota. The

absence of biota around one of these mud volcanoes is

consistent with very recent crater formation. If recovery of

biota around these ‘cold seeps’ after an eruption is

analogous to the chemosynthetic communities around the

more well-studied hydrothermal vents, then the absence of

biota indicates that the mud volcano eruption occurred

within the previous year. In one case, foramifera were found

in the crater walls on the seafloor, suggesting that venting

must have occurred from a depth of at least 15,000 ft

(Whelan et al., 2001); this depth is estimated from data of

Kohl and Roberts (1994), and seismic data from Coelho

(1997). Carbonate associated with the older seeps is derived

from degraded petroleum or biogenic gas as shown by light

d13C values (typically K26 to K30‰). U/Th and d14C

dating show that some seeps have been evolving for about

the last 1800 years (Aharon et al., 1997). Similar

occurrences of xenolithes carried from depth to the surface



Fig. 4. Generalized subsurface profile of Gulf Coast transect where Miocene and younger sediments overlie salt (brown) and deeper, older ‘unknown’

formations.
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have been described recently for Caribbean Trinidad mud

volcanoes (Deville et al., 2003) which lie outside of the Gulf

of Mexico in several hundred kilometer long mud volcano

and shale diapir zones within the offshore Barbados–

Trinidad compressional system.

At the southern end of the N–S transect studied in our

work (Figs. 1 and 4), surface and subsurface manifestations

of gas and oil movement in the Gulf of Mexico appear to be

coupled. For example, gas bubbles are venting at the present

time through fractures in a hydrate mound at Bush Hill,

GC184, which overlie the Jolliet oil field in the northern

Gulf of Mexico. Isotopic evidence shows this gas to be

thermogenic and to be the primary gas source for surface gas

hydrates found in the area (Sassen et al., 1999a, 2001a,b;

Sassen, 2001). Thermogenic gas is the most viable primary

chemosynthetic food source for the biological community

that overlies the Bush Hill gas hydrate mound (Sassen et al.,

1993a,b, 1998; Sassen and MacDonald, 1997; Lanoil et al.,

2001; Sassen, 1997), although biogenic gas hydrates also

occur (Sassen et al., 2002).

In some areas of the Gulf of Mexico, the results of

vigorous gas seepage through subsurface sediments have

had a dramatic effect on geophysical data, with seismic

signals being smeared to considerable depths (e.g. Fig. 3).

This widespread gas seepage may be responsible for the

general lack of bottom seismic reflectors in the northern

Gulf of Mexico despite the probable widespread occurrence

of gas hydrates (e.g. Neurauter and Roberts, 1992, 1994;

Roberts et al., 1999a,b; Roberts, 2001; Roberts and Carney,

1997; Milkov and Sassen, 2001a,b; Cooper and Hart, 2003).

Slumps and slides on continental slopes are prevalent in

many parts of the Gulf of Mexico, particularly in the

Mississippi Canyon (e.g. Bouma et al., 1986) and, in some

cases, could be triggered by gas. Gas venting, possibly
associated with gas hydrates, has been proposed as one

possible cause for a massive slide off the North Carolina

coast, as discussed later in this chapter.

The Gulf of Mexico upper continental shelf contains

many excellent examples of the various phenomena that

accompany natural gas seeps in an oil and gas productive

area. MacDonald et al. (1993) have published satellite

photographs of oil slicks in the Gulf of Mexico that extend

for miles over deep water areas where there is currently no

oil production. The Gulf of Mexico gas seeps studied most

completely to date are comprised primarily of thermogenic

gas (Sassen et al., 2001a) although biogenic hydrates and

seeps have recently also been reported to be widespread

(Sassen et al., 2002). In other parts of the world, biogenic

and thermogenic seeps have been described (e.g. Fig. 5).

Among the world ocean bottom seeps, the Gulf of Mexico

contains an unusually high proportion of thermogenic

gas seeps.
3. Summary of effects of ocean bottom gas

venting worldwide

The surface and subsurface gas-venting features

described above are not unique to the Gulf of Mexico.

The phenomena associated with these seafloor gas seepages

are often not subtle and have now been observed in a

number of areas of the world, as described in recent reviews

(Judd, 1997; Hovland and Judd, 1988, 1992; Judd et al.,

2002). Some of these areas, indicated on the map in Fig. 5,

include the North Sea (Jensen et al., 1992; Judd, 1997;

Hovland and Mortensen, 1999; Boe et al., 2000), the Berants

Sea (Lammers et al., 1995), the Black Sea (Luth et al.,

1999), the Eastern Mediterranean (Charlou et al., 2003),



Fig. 5. Mixture of methane hydrates and petroleum accidentally dredged from the sea-bottom in the Canadian Cascadia margin.
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the Persian Gulf (Uchupi et al., 1996), the Timor Sea

and offshore Australia, (O’Brien et al., this volume), the

Niger Delta (Hovland et al., 1997), Penobscot Bay, Maine,

USA (Kelley et al., 1994), off western Ireland and north-

west Australia (Hovland et al., 1994), and most continental

margins (Fader, 1991; Judd et al., 2002; Clennell et al.,

2000; Hovland, 2000; Hovland et al., 2001, 2002). The gas

sources found for the majority of these areas have been

described as containing predominantly biogenic gas

(methane d13C values typically K50 to K65‰ and only

traces of C2–C5 components; note, however, that these d13C

ranges are not very diagnostic and could apply equally well

to a low maturity thermogenic gas or a partially biodegraded

initially very light biogenic gas). In a significant number of

cases, both biogenic and thermogenic gas seepage and

venting occur, as is the case in the Gulf of Mexico (Milkov
Fig. 6. Map of occurrence of some of gas seeps described to date w
and Sassen, 2001a,b, 2003a,b). For example, till very

recently, the gas hydrate seeps found along the north

western United States subducting Cascadian Margin were

thought to be comprised primarily of biogenic gas (Kulm

et al., 1986; Whiticar and Hovland, 1995; Carson et al.,

1995). However, to the north, more than 1.5 tons of gas

hydrates were recently accidentally dredged from the

seafloor of the Canadian Cascadian Margin by some very

surprised fishermen (Fig. 6). These hydrates were covered

with oil, leading to the conclusion that they are associated

with thermogenic petroleum and gas deposits.

Venting of this nature often occurs at continental margins

and other locations where circulation between gas-contain-

ing and open ocean waters is not as restricted as is the case

for the Gulf of Mexico (Fig. 5). Comparison of the Gulf of

Mexico seeps with seeps worldwide suggests that the latter
orldwide. New areas of seepage continue to be discovered.
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are currently under-appreciated by the scientific community,

even though they may be having significant effects on a

number of important geological, oceanographic, and atmos-

pheric processes (Judd, 1997; Judd et al., 2002).

Seeps and their fossil manifestations—‘pockmarks’ in

the seafloor—also appear to be ubiquitous in many parts of

the ocean floor, particularly in river deltas, which have rapid

sedimentation rates, and on continental margins associated

with subduction zones (Hovland and Judd, 1988; Hovland

et al., 2002; Judd et al., 2002; Clennell et al., 2000). Where

water depths are sufficient to provide high pressures and low

temperatures, the upward-seeping gas commonly produces

gas hydrate deposits at or just below the seafloor

(Kvenvolden and Lorenson, 2001; Kvenvolden, 1993;

Kvenvolden and Rogers, this volume; Buffett, 2000; Judd

et al., 2002). These seafloor gas hydrates are very similar to
Fig. 7. Gas and water continuously rise up from one of numerous mud volca
those occurring in the Gulf of Mexico and are themselves

commonly associated with seep gas, disrupted subsurface

sediments, and chemosynthetic communities of organisms.

One of the more spectacular results of natural gas

seepage are the mud volcanoes in Azerbaijan adjacent to the

Caspian Sea (Fig. 7; Hovland and Mortensen, 1999), as well

as numerous mud volcanoes on the seafloor of the Caspian

Sea (Yusifov and Rabinowitz, 2003; Guliyev, 2003).

Seismic evidence suggests that vertical subsurface gas

movement to seafloor vents has occurred through narrow

sediment ‘pipes’ from deeper gas sources. Similar vertical

seismic and geochemical pipes have been described for

North Sea (Løseth et al., 2003) and northeastern Atlantic

seafloor gas seeps.

Carbonate mounds, or hydrocarbon seep lithoherms

similar to those found in the northern Gulf of Mexico
noes in Azerbaijan (reproduced from Hovland and Mortensen, 1999).



Fig. 8. North Sea: a violet coral and various sponges living on carbonate mound of the Haltenpipe ‘reefs’ or hydrocarbon seep lithoherm (from Hovland and

Mortensen, 1999).

Fig. 9. A sketch suggesting how light hydrocarbons, methane, ethane, and

butane (natural gas) seep upward along dipping sedimentary rock layers and

through the seafloor in the North Sea Haltenbanken area. Seepage on left

occurs through ridge; seepage on right through a layer of clay, causing

seafloor pockmark to form (from Hovland and Mortensen, 1999).
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and described above, are a common feature of ‘old’ venting

areas in other parts of the world as well. For example,

carbonate mounds attributable to active oil and gas seepage

are very similar to coral reefs in appearance and occur over

North Sea reservoirs at a water depth of about 400 m (Fig. 8;

Hovland et al., 1998; Hovland and Mortensen, 1999;

Hovland and Thomsen, 1997). The North Sea seepage is

attributed to venting at the seafloor, where subsurface

fractures outcrop at the top of ridges (Fig. 9; Hovland and

Mortensen, 1999) in a manner similar to that found at the

Bush Hill site in the Gulf of Mexico (Roberts et al., 1989,

1990a; Roberts and Carney, 1997; Roberts, 2001).

Venting through clay layers commonly results in the

formation of a pockmarked seafloor as the venting gas is

released into the water column (Fig. 9). These ‘pockmarks’,

which were first documented worldwide in a classic book by

Hovland and Judd (1988), are attributed to past seafloor

venting, as are large subsurface gas chimneys and carbonate

hard grounds or mounds on the seafloor similar to those

found in the Gulf of Mexico (Roberts et al., 1989, 1990a,b;

Roberts and Carney, 1997; Roberts, 2001).

A spectacular ancient example of a seafloor carbonate

deposit is shown in Fig. 10 where a huge carbonate mound

in the middle of the Sahara desert is attributed to a fossilized

gas seep (Wendt et al., 1997). This ancient carbonate mound

is believed to have formed initially from seafloor gas

seepage at an estimated water depth of 400 m, similar to the

present-day water depth of the North Sea coral reef-like

mound shown in Fig. 8 which is also thought to be fed from

hydrocarbon seepage from the underlying North Sea

petroleum reservoirs (Hovland and Mortensen, 1999).
It has been proposed that gas seepage may contribute

to slope sediment destabilization leading to the huge

underwater mudslides commonly observed on continental

slopes (e.g. Tucholke et al., 1977; Thiery et al., 1998;

Clennell et al., 2000; Roberts, 2001). A dramatic recent

example has been documented on the eastern continental

slope off North Carolina (Fig. 11; Driscoll et al., 2000)

where methane-rich plumes and hydrates have also been

documented (Paull et al., 1995). It has been postulated that

the slide (Fig. 11) is large enough to cause a tidal wave if it

happened today. Note the small dimples (a and b) at the top

of the slope in Fig. 11; these appear to be pockmarks, or

depressions, which are commonly caused by fluid discharge

(gas or liquid) to the seafloor, similarly to those documented

in Hovland and Judd (1988). Scripps and Woods Hole

groups have recently mapped methane seepage associated

with one of the pockmarks in Fig. 11 (Driscoll and Camilli,

unpublished results). More work is required to find out



Fig. 10. Algerian Sahara: fossilized carbonate mound, a giant coral reef-like structure, previously buried in sand. When living, they existed at estimated depth

of about 400 m, similar to Norwegian carbonate ‘reefs’. A German expedition found that the carbonate mounds formed along the edge of an extensive

sedimentary basin, with large subsurface faults beneath the carbonate mounds. The expedition vehicle can be seen in the foreground (Wendt et al., 1997; from

Hovland and Mortensen, 1999).
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whether or not sufficient gas is present, and could be vented,

to cause a slope failure at this location. An alternative

mechanism of slope failure has been proposed by Dugan and

Flemings (2000, 2002), which involves sediment compac-

tion, overpressuring, and dewatering possibly enhanced by

offshore ground water movement.
Fig. 11. Massive slide on continental slope, offshore North Carolina. Note

pockmarks on upper shelf edge (a and b), which may be indicative of gas

seepage at the top of the slope (from Driscoll et al., 2000). Also indicated is

a slide/slump (c), postulated to have been triggered by past gas flow. Inset

shows location of this area as just one of a number of similar features along

US east coast where the potential gas-triggered slides also may be present.
4. Gulf of Mexico—subsurface effects of gas movement

The Woods Hole research on the Gulf of Mexico oil and

gas seeps began with the finding of rapid (less than 10 year)

changes in oil compositions in EI330 oil reservoirs, toward

the southern end of the N–S transect in Fig. 1; these changes

do not appear to be attributable to production effects

(Schumacher, 1993; Whelan, 1997; Whelan et al., 1994,

2001). Further investigation showed that the oils in this

stacked reservoir sequence were being altered by upward

migration of large volumes of gas in a process cornell

workers defined as ‘gas washing’ (Meulbroek et al., 1998)

and envisioned as multiple volumes of gas streaming into and

equilibrating with oil in reservoirs (Fig. 12), followed by the

gas phase continuing to stream upward. The resulting

fractionations of n-alkanes observed in these ‘gas-washed’

oils have been successfully modeled using multiple sequen-

tial volumes of gas coming from deeper intervals which

equilibrate with the oil, and then continue an upward path

into shallower reservoirs (Fig. 12). This process, which was

first studied in detail for the EI330 oils (Meulbroek et al.,

1998), causes the lowest molecular weight hydrocarbons to

be swept out of the oil preferentially and enriched in the

moving gas stream so that shallower reservoirs become

enriched in progressively lighter hydrocarbons (Fig. 12;



Fig. 12. Schematic diagram of gas washing process.

J. Whelan et al. / Marine and Petroleum Geology 22 (2005) 479–497488
Losh et al., 2002a,b). Gas washing differs from evaporative

fractionation, described by Thompson (1988), which only

involves a single stage of gas equilibrating with and

separating from oil. Gas washing produces a characteristic

hydrocarbon signature different from that produced by water

washing—which preferentially removes aromatic hydrocar-

bons (Hunt, 1996)—and from biodegradation—which pre-

ferentially destroys the lowest molecular weight n-alkanes

first (Palmer, 1994; Whelan et al., 1994, 2001). Meulbroek et

al. (1998) demonstrated that gas washing produces, in the

absence of these and other complicating factors—including

source and oil maturity changes—a characteristic shape for

the gas chromatography (GC) homologous n-alkane pattern

in the oil (Fig. 13). This shape can be used, along with the

initial wellhead pressure and temperature conditions in the

reservoir, to calculate: (1) the number of volumes of gas

which have equilibrated with each oil in the gas washing

process; (2) the volume and composition of the oil remaining;

and (3) the volume and composition of the oil enriched gas

that has moved upward into each overlying reservoir. Losh et

al. (2002a) successfully applied a modification of the

procedure using only the C10C n-alkanes to determine that

most oils in the N–S transect shown in Fig. 14 have

undergone significant gas washing, with the effect being

strongest to the north (30 volumes of gas have washed each

volume of oil at Tiger Shoals, the wells furthest to the north)

and gradually weakening toward the south (with about 3

volumes of gas having washed EI330 oils toward the south,

Fig. 14). There is no evidence that the GC184 oils furthest to

the south have experienced any appreciable gas washing.

The relative timing of gas washing and the associated gas

movement along the N–S transect in Fig. 4 can be estimated
by also considering other processes which might be

responsible for these progressive changes in composition,

including biodegradation, source changes, and maturity

(data from GRI report: Whelan and Eglinton, 2002).

Throughout the transect, less mature oil is mixed with

more mature gas, as described previously for EI330

(Whelan et al., 1994, 1995 and as discussed at length in

Losh and Cathles, 2002). Recent modeling, combined with

the organic geochemical data, shows that oil generation

probably took place in the Miocene from rocks currently

buried directly beneath their present-day Pleistocene

reservoirs (Coelho, 1997; Erendi, 2001; Cathles et al.,

2004, 2003; Cathles and Losh, 2002). Therefore, oil

generation probably occurred considerably before the time

of formation of the present-day Pleistocene reservoirs and

was initially trapped beneath salt sheets, as shown

schematically in Fig. 15.

The influence of source changes is considered to be

minimal. Hopane and sterane biomarkers are remarkably

similar for the shallower shelf oils to the north (SMI9) and

the deeper water oils at the south (GC184,) even though

there appears to be an enhanced contribution from younger

Eocene oils to the north and older Cretaceous and Jurrassic

oils to the south. Many of the oils to the north of the transect

appear to be mixed with Tertiary sourced oil, as shown by

slightly higher amounts of dibenzothiophene/phenanthrene

which increases in oils to the south of the transect (Fig. 16a).

Increases in this ratio are indicative of an increased

source input from higher sulphur more marine kerogens

(Hughes et al., 1995). In addition, the proportion of

oleanane, diagnostic of input from source rocks containing

higher plant input, simultaneously increases to the north



Fig. 13. (a) Typical C10C n-alkane pattern for Gulf Coast oil that has not undergone gas washing. (b) The relative amount of each n-alkane decreases

exponentially with increasing carbon number (from Losh et al., 2002a,b). (c) Same as (a), for oil that has experienced gas washing (from Losh et al., 2002a).

(d) Relative amount of each n-alkane versus carbon number for oil in (c). The break number, slope, and mass depletion are used to estimate the number

of volumes of gas which have ‘washed’ a particular volume of oil.
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(not shown) as would be expected if sourced from the

shallower terrigenous Tertiary rocks in this area, but not

from the older and more marine Jurassic and Cretaceous

rocks. A similar trend results when the ratio of oleanane to

C30 hopane is plotted (not shown). 30bb Hopane is

commonly used as a marker for input of marine organic

matter (Peters and Moldowan, 1993).

The differences in most biomarkers are quantitatively

minor, even though they are useful for distinguishing at least

two different oil families. IRGCMS analyses of individual

C7–C10 components (Fig. 16b) also reveal two end

members of a series. SMI9 oils are statistically distinct

from GC184 oils (Fig. 16b). This similarity in source of a

majority of oils in the transect probably originates from the

predominant generation from marine sourced kerogen.

Evidence for the geologically dynamic nature of

reservoirs within the transect is reflected in the highly

variable n-alkane hydrocarbon fluid compositions through-

out the transect, with different sands producing a variety of

admixtures of gas, condensate, and oil. In addition, at EI330

low molecular weight, highly biodegradable compounds

(i.e. light i-alkanes) are commonly superimposed over the

‘hump’—or unresolved complex mixture (UCM)—of

a typical biodegraded oil background (Whelan et al.,

1994, 2001). This pattern is very common throughout the

transect and also occurs widely throughout the Gulf Coast
and has been observed in other areas as well (e.g. Dzou and

Hughes, 1993; Holba et al., 1996; Curiale and Bromley,

1996a,b). Many of the oils at the southern end of our

transect are similar to the EI-330 oils in having the lightest

and most volatile—and the most highly biodegradable—n-

alkanes as the most predominant C3–C10 hydrocarbon

fraction. This pattern of unbiodegraded n-alkanes being

superimposed over a biodegraded background is interpreted

as indicating continuous replenishment of the very rapidly

biodegraded n-alkane fraction by continuous upward

streaming of lighter oil components by the gas washing

process. In any petroleum reservoir having a temperature of

less than 60 8C, and in some cases up to 80 8C, as well as the

proper nutrients, anaerobic biodegradation is probably a

ubiquitous and ongoing process. Therefore, the presence of

unbiodegraded oil occurring together with a biodegraded

background has been attributed to extant hydrocarbon

injection occurring on time scales of less than the rates of

biodegradation—typically weeks to a few years under in

situ reservoir conditions at higher pressures (Jannasch and

Taylor, 1984; Rueter et al., 1994; Stetter et al., 1993;

Gibson, 1984; Singer and Finnerty, 1984). Anaerobic

sulphate reducing microbes of a moderately thermophilic

nature (60 8C) have been isolated. These consortia utilize

n-alkanes from C6 to C16 as substrates (Rueter et al., 1994)

with the best growth occurring in the C8–C12 range. This is



Fig. 14. Percent of C10C depletion for Gulf Coast oils in study transect

indicated in Figs. 1 and 4 assuming that maturity and origin for all oils is the

same as is the case for these oils (see text).
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the carbon range that is commonly the most depleted in

partially biodegraded Gulf Coast oils (Whelan et al., 2001).

A recent review of biological activity in deep subsurface

petroleum reservoirs proposes that the rate of supply of

nutrients is a critical control on the rate of petroleum

biodegradation in these deep reservoirs (Head et al., 2003).

Losh et al. (2002a) conclude that the GC184 oils have not

yet been appreciably altered by gas washing. However,

these oils do show the co-occurrence of degraded and non-

degraded n-alkanes within the same reservoir, suggesting

active light hydrocarbon movement (Whelan and Eglinton,

unpublished data).

The overall scenario that is developing is of rapid and

recent upward movement of thermogenic hydrocarbons,

which first preferentially alter oils in shallow reservoirs and

are then vented through the sediment–water interface to

produce the characteristic seep features discussed pre-

viously and summarized in Fig. 2.

A preliminary working model of oil–gas generation–

migration consistent with both the surface and subsurface

geochemical modeling, as well as observational data

throughout the transect, gives a very dynamic picture of

the gas and oil movement, which has caused significant

alteration of the oils to the north and is just beginning to
affect the oils toward the south. After initial filling of deeper

reservoirs beneath a salt layer, further rapid sediment

deposition caused the salt to flow, thereby forming holes in

the salt and enabling trapped oil to migrate rapidly upward

through these holes and into the overlying productive

reservoirs (Fig. 15). This process is probably still in progress

at the present time in southern portions of the transect,

including EI330 and GC184 (Erendi, 2001; Sassen et al.,

2001a,b; Cathles, 2004). This scenario is consistent with the

maturity data for the transect which show an overall gradual

change from more mature to the north (SMI9, MPI-1Z1.1)

to less mature in the south (GC184, MPI-1Z0.9, Fig. 16).

Superimposed on this general trend are ‘hot spots’ of higher

maturity oil which are possibly interpreted as indicating

zones of higher heating where kerogen and oils were, until

very recently, trapped beneath salt in deeper sediments.
5. Relation of surface and subsurface gas migration

in the Gulf of Mexico

The most general and surprising conclusion of our

research on oils and gases in the Gulf of Mexico N–S

transect has been the rapid and dynamic nature of the whole

oil–gas generation–migration system in this area. This

pervasive gas movement at various times and various

places, both over geologic time and continuing up to

the present time, directly affects the style of seepage

overlying various parts of the transect. The extensive and

older gas migration system to the north has given rise to the

isotopically light carbonate pavements and mounds on the

seafloor across much of the continental shelf. The sediments

overlying EI330 at the shelf edge also contain carbonate

pavements and apparent signs of active chemosynthetic

communities fed by underlying gas. At the southern end of

the transect, GC184 reservoirs do not yet show evidence of

alteration of oils in reservoirs, but do show strong evidence

of active present-day gas migration through surface

sediments. This gives rise to gas bubble venting though

fractures, surface sediment gas hydrates, chemosynthetic

biological communities, and mud craters and volcanoes, as

discussed previously.

Similar observations have been made at a number of

other seafloor hydrate deposits, including some in much

deeper water, such as the Cascadian Margin (Suess et al.,

2001). These observations suggest a very dynamic gas flow

system in some cases where gas hydrates are only the

ephimeral manifestation of a much larger gas flow system,

as previously proposed by Dickens (1999, 2001a,b). At the

Bush Hill GC184 site, Chen and Cathles (2003) compared

the size of present-day hydrate deposits with the calculated

rate of gas delivery using basin and fluid flow modeling. It

was concluded that gas is being actively delivered to the

hydrate at the present time and that 90% of this gas is being

actively vented to the ocean, while only 10% is trapped in

the hydrate. Data of Sassen et al. (2001a) were used to show



Fig. 15. Gulf Coast transect: general schematic diagram of subsurface oil and gas flow consistent with geochemical, geological, and fluid flow modeling

(Whelan and Eglinton, 2001).
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that isotopic properties of the upward streaming gas and of

the gas hydrate are identical, making separate gas sources

for the hydrate and venting methane unlikely.
6. Can surface seeps be used to explore for subsurface

oil? Perspective from a mass balance point of view

The results described above suggest a potentially

substantial difficulty in using surface seeps to explore for

subsurface oil; a large ubiquitous ‘background’ of gas

seepage moving continuously through the subsurface may,

in some areas, make utilization of seeps in exploration very

confusing. In the absence of ancillary geochemical,

geological, and geophysical data, the presence of this

background gas makes difficult the determination of when

and how a surface gas seep is related to an economic

subsurface petroleum accumulation. The magnitude of the

problem can be appreciated by considering that, worldwide,

less than 2% of generated gas and oil is ever found in a

producible reservoir. Of the remainder, about half is vented

into the ocean, while the other half remains in the subsurface

(Whelan et al., 2001, estimated using data from Hunt, 1996).

Modelling in the area of the Gulf of Mexico shown in

Fig. 14 indicates that less than 30% of the generated
hydrocarbons are retained in the subsurface in this area

(Cathles, 2004). A significant portion of this ‘non-reservoir’

gas may be available for the processes described here that

require a continuous gas stream, including gas washing of

oils, gas venting through surface sediments, gas hydrate

formation, and the feeding of chemosynthetic biological

communities.

Where is all this gas coming from? We suggest that

ubiquitous thermogenic and biogenic methane generation

processes, which occur in most organic carbon-containing

sediments worldwide, are responsible. Thermogenic

methane generation is ubiquitous in sediments having as

little as 0.5% total organic carbon and which are exposed to

temperatures of 80 8C and higher (Hunt, 1996). Similarly,

methanogenesis (or anaerobic biogenic methane generation)

is almost ubiquitous in sediments having as little as 0.3%

total organic carbon and has been observed to sub-bottom

depths of at least 800 m sub-bottom (Parkes et al., 1994).

Two important and abundant starting materials for both

processes, kerogen—comprising the bulk of the TOC pool

of most sediments—and carbonate carbon, represent two of

the largest carbon pools on earth (Kvenvolden, 1993).

Therefore, it would not be surprising if some portion of this

‘background’ gas generation and migration is confusing our

interpretations of surface seep data.



Fig. 16. Gulf Coast transect oil source and maturity indicators for wells toward the north, SMI9, and proceeding to GC184, furthest to the south. Each point

indicates data for one well in the transect. (a) Methyl Phenanthrene Index I, a maturity indicator as defined by Radke (1988). Note the general slight increase in

maturity of oils to the north with anomalous zones of higher maturity: these are ‘hot spots’ occurring at a number of EI wells in the center of the transect. These

hot spots are postulated to represent upward injection of more mature oils from deeper sections through holes in overlying salt layers. Also shown is a source

indicator, dibenzothiophene to phananthrene, which tends to increase with increasing marine (that is marine carbonate or siliceous ooze, non-clay mineral)

source contribution (Hughes et al., 1995). This ratio increases toward the south of the transect indicating a larger marine source contribution to southern-most

wells. (b) IRGCMS results for suite of C6 and C7 hydrocarbons. The average d13C values and standard deviations are shown for oils from seven wells from the

northern-most SMI9 field and eight wells from the southern-most GC184 field.
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In dynamic gas migration systems such as that described

here for the Gulf of Mexico transect, an actively charging

economic reservoir could be confused for an old leaky non-

economic one. The specific seafloor manifestations of

seepage described above can help in distinguishing these

two possibilities. Furthermore, if the gas streams which

carry underlying oil components upward are widespread,

then it may be possible to utilize the complex seep

hydrocarbon signatures in much smarter ways than has

previously been possible.

The research presented here suggests a general way that

molecular hydrocarbon seep data could be used to gain a more

quantitative picture of gas flow through the subsurface using

procedures similar to those described here for elucidating the

degree of subsurface gas washing (Figs. 13 and 14).

In conclusion, surface seeps are not a ‘magic bullet’ for

petroleum exploration. Their full potential can only be

realized if individual compounds in seeps can be separated

and quantitated, and their signatures distinguished from

those of sediments surrounding the seeps. In addition,

diagnostic molecular seep information related to subsurface

accumulations must be interpreted in the broader context of

all available geochemical, geological, geophysical,
oceanographic, and atmospheric data available for a

particular area. The first step might be to use seep data

together with initial geophysical and well data to determine

whether or not a particular ‘petroleum system’ is relatively

closed, as is currently generally assumed, or if it is more of a

moving stream similar to that envisioned for the Gulf of

Mexico transect gases in Figs. 2 and 15. This distinction is

important in deciding whether a seep represents an actively

charging economic reservoir, an old leaky non-productive

reservoir, or some other state lying between these two

extremes.
7. Conclusions

Evidence for the dynamic nature of gas movement in

both surface and subsurface sediments through a N–S

transect in the northern Gulf of Mexico has been presented.

Some of the effects discussed include:
†
 gas hydrates
†
 gas bubble streams issuing through fractures and faults in

the seafloor, even in deep water
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†
 pockmarks and craters in the seafloor
†
 mud volcanoes
†
 carbonate pavements
†
 large oil slicks that cover large areas of the ocean having

no oil production
†
 prolific chemosynthetic communities of organisms

supported by hydrocarbons and sulphur as the primary

food sources
†
 evidence of massive disruption of subsurface sediments
†
 alteration of some subsurface oils and gases on short time

scales
†
 significant alteration of oils in reservoirs by upward gas

movement and gas washing

These processes are not confined to the Gulf of Mexico;

examples are presented to show that similar phenomena

occur in many areas worldwide with new ocean bottom seep

areas continuing to be discovered. These processes may be

so widespread that they lead to confusion in the utilization

of surface seeps to explore for subsurface economic

petroleum accumulations. A review of these processes as

they occur in the Gulf of Mexico is presented, along with a

discussion of the close inter-relationship of seeping gas and

its associated biota, gas flow through and around petroleum

reservoirs, gas hydrates, and observations of ocean-floor

seep associated biota.

The general relationship between the nature of the

surface seep features and the relative amount and timing

of gas movement through subsurface oils is described for

a N–S transect in the northern Gulf of Mexico. Large

volumes of gas can be involved; as much as 30 times the oil

volume was estimated for some reservoirs in the transect.

The degree of gas washing appears to be reflected in the

general nature of gas seep features in surface sediments

overlying these reservoirs. The reservoirs to the north which

have experienced the most gas washing are overlain by

carbonate pavements characteristic of older ‘fossil’ seeps,

while complex chemosynthetic communities, surface gas

seeps, and active gas bubble discharge areas increase

gradually to the south, reaching a peak over the southern-

most Green Canyon reservoirs which currently show little or

no evidence of alteration of reservoir oils by gas washing. It

is proposed that these features of present-day gas seepage

overlying Green Canyon reservoirs are diagnostic of a much

earlier stage of gas generation and movement, possibly

diagnostic of active present-day reservoir charging.

It is suggested that the relationship between surface seep

oils and subsurface petroleum plumbing within this N–S

transect in the northern Gulf of Mexico, far from being an

anomaly, can serve as a natural laboratory for other seep–

reservoir systems worldwide. Future work should focus on

utilizing the quantitative geochemical data from specific

organic compounds in the seep—along with the geology,

geophysics, and biology—in order to gain more information

about the nature of any of the underlying reservoirs with

respect to oil quality, timing of reservoir filling, and
probable degree of alteration by gas washing, water

washing, and biodegradation.
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