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Butte Montana, the richest hole on earth
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Mine site

Safford Az being developed by 
Phelps Dodge

http://www.womp-int.com/sample.htm


NE-SW Dike Swarm

0               400 ft

Dike Orientations

Cathles et al. (1978)



Water table elevation
Plateau reflects 
fractured, relatively 
permeable ore body

Cathles et al. (1978)



Ore body shaped 
like inverted canoe

KCC AIME presentation 1978
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1000 ft elev

0                4000’

DH 147

Mixed 
sulfide and 
oxide ore



DH 147

Vapor homong. fluid incl.

DH 147

Dudas (1977)



Bimodal distribution of salinity

Dudas (1977)



Metals in veins
30% of veins vuggy
Vuggy veins are permeable
10-20 vv/ft

Cathles et al. (1978)



Genesis
1. Deposits form when lithostatically-
pressured magmatic fluids vent, 
decompress, and undergo phase 
separation

Ore shell

2. Sufide precipitation 
homogenizes aperture of flow 
fractures (anti-wormholing)

Porphyritic
intrusion

6. Magmatic fluid supplied by 
much larger intrusion as it 
crystallizes

3. Pyrite halo extends beyond ore 
shell.  P2O4, TiO2 and BaO at 0.X wt%.

4. Ni and Co are incorporated in py.  
Whole rock concentrations of 0.00x wt%.  
Also W, Mo, V, Sn, …

5. Zn and Pb at fringes (up to 0.02 and 
0.006 wt% bulk)- scavenged from 
surroundings

Sulfur anomaly 
(with Me added)

0.4 wt% Cu



Weathering can enrich porphyries

0   0.02           0.2               0.02    0   %Cu
0.5    4                5                   4    0.5  % sulfides

1. Can leach if
enough py

2. Leave 
behind if not 
enough py

Anderson (1982)

Chalcocite (Cu2S) ore

Chalcocite (Cu2S) ore

Stage I Stage II



No leaching if 0.5% Cu and 1 vol% total sulfides
… not enough acid generated

% Cu

Anderson (1982)



Jarosite leach cap and chalcocite 
(enriched) ore at Butte, Montana

Anderson (1982)



Another example: 
Butte, Montana Pre-main stage: 

in interval 66.4-64.8 Ma
veinlets
vein halos

Main-stage
in interval 65-62.5 Ma
~3 m wide veins



Continental Pit

Big Butte
Silicified
Edge 4 km
Diam ignimbr

vent

Headframes along Main Stage Veins



Pre-main 
stage 
Butte

EDM
Hb+K→bio

GS
acid attack

Potassic alteration: 
very rapid introduction 
of K converts hb to bio

Later sericite alteration 
is from acid attack



8.3 km

Butte

Source
intrusion

5 wt% magmatic water vented

Potassic transition zone width 
requires potassic alteration 
formed in ~800 yrs

1. Flow rate

2. time
3. Total alteration measures 
fluid expelled

Porphyries are barely-
controlled explosions



Acid vein halos develops only as  T allows 
SO2 and H2S dissociation & acid generation

BQEDM Q-mo

EDM

PGS
GS

crkl

Hot fluid not acid

Cooler fluid very acid

no halos
ever formed at 
center- hot until 
flow stopped

Sericite alteration is a donut…



Mn Vein (Distal Main Stage)



Butte Conclusions
1. Initial volatile release very rapid (900 yrs 

Butte)
2. Intensively fractures host (dilation, uplift)
3. Potassically enriches very large volume
4. Heats to ~600C an even larger volume
5. Mineralization and acid alteration occurs as 

venting wanes and system cools
6. Main stage opened a few very large cracks
7. Some porphryies explode like Pinotubo 

(which hosted porphyry mineralization)



The bottoms of porphyries
(and the sulfur problem)



See deep into system at Ely, Nevada

Westra (1979)… put the pieces together



Restored system reveals Weary 
Flat Qtz Monz as source magma

0               3000
ft

Hb Granodiorite
107-109 Ma

110 Ma



60-80×106 tons S added



7×106 tons Cu added

System is a S anomaly with a little Cu added



Significant Mo enrichment

Mo more enriched but lower grade



The excess sulfur problem
June 1991 Pinatubo 
vented 17×106 t S with 
5 km3 dacitic 
pyroclastics which 
could hold ~1 ×106 t S 

Pinatubo area hosts 
several porphyry Cu 
deposits

Dizon, 187 Mt @ 0.36% Cu

Pisumpan + Pinpin 20 Mt @ 0.4% Cu and ~1g/t 
Au in Quaternary dacite volcanics

Pinatubo
1991

Wallace (2003)

Pinatubo erupted too much S



Mafic magmas can be rich in S

Ocean basalt 1000 ppm S

Primitive melts in Java, Italy, and 
Bataan carry 2000-3000 ppm S

Felsic rocks carry very little S 
because they are Fe-poor

Hattori and Kieth (2001)



Hattori suggests basalts contribute S

Hattori and Kieth (2001)
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δ3
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1. S in porphyry deposits is from 0%o seawater

Cu [Mt]
10            20

2. Bingham Porphyry Cu-Au 
>22 Mt CU and > 1,250 t Au 
has high Mg primitive dikes 
with identical age to 
mineralization, textures 
suggest felsic and mafic 
magmas mixed

(Bingham Canyon 
Utah is the biggest 
copper and the 
biggest gold mine in 
North America)



Injection of mafic magmas 
triggered volatile release

1. Mid to deep crustal sill injects mafic magma

2. Volatiles released explosively from 
felsic magma chamber

3. Porphyry are fractured and deposit formed

Hattori and Kieth (2001)



Porphyry S can be supplied by sills

S in 5 porphyries = 1.5 km 
cubes with 2 wt% S

Can be supplied by 50 km 
diameter sill 240 m thick 
that contributes 500 ppm S 



~ depth to brittle-
ductile transition

Mid crustal mafic sills common



A hot sill 75x50 km underlies 
Socorro New Mexico





The flavors of porphyries

Cu, Mo, Sn-W, Au



The Climax 
Porphyry-Mo

III

II

I

Climax, Co

1. Deeper (inhibits Cu)
2. Multiple shells
3. More contained
4. Oxidized relative to W

Depth and magma fO2 control metal mix

Brain rock
Ore shells

White et al. (1981)



Partitioning relations

• Deeper volatile separation favors Mo and 
W over Cu

• Lower fO2 favors volatiles rich in W rather 
than Mo

• Cu → po, Au → Cu and Fe Sulfides.  Thus 
oxidized magmas favor Cu, and magmas 
which loose volatiles without precipitating 
Cu or Fe sulfides favor gold

Candela (2005)



The tops of porphyries

More gold



Gold- frosting on top of porphyry

Indio Sur 3500 2.5 cm

Contacto Dos 2 cm

Contracto Dos

0.35 mm

Contracto Dos          15 mm
Indio Sur       3.5 mm

0        50
m 

Mula Muerta     1.5 cm

El Indeo

O’Brient (1984)

Consequence of near-surface venting magmatic volatiles



Fluid salinity controls Au

O’Brient (1984)



Inferred system evolution

O’Brient (1984)



Summary of fluid types and relations

Water in equilibrium with magma
magmatic water

Water in eqilibrium with host
neutral Cl water

>800C

<375C

Acid sulfate water

cool without
equilibrating

Cool and 
equilibrate

Meteoric water

Warm and
equilibrate

neutral Cl
bicarbonate
water if equil
at higher T

biol

LV

condense
seawater

VMS

π

Au



The metal cycle



Scott (1997)

SW sulfur enriches ocean crust

∆ [mmol] At Wt 1012 mol/yr 106 t/yr
S -20.4 32 3.7 120#

Mg -52 24.3 9.3 226#

Fe 1.492 55.84 0.27 15
Mn 0.885 54.93 0.16 8.8
Zn 0.085 65.37 0.015 1
Cu 0.022 63.54 0.004 0.25+

Numbers assume 180 km3 yr-1 seawater circulation ≥300°C 
3x larger @ >150°C.
Cumulative Cu production = 600×106 t = 2400 yrs of circultn

Chemical change due to MOR convection



SS organics

S

Pt, Pd

N2
129I

Convective
pump

Magma 
Processing

1. East Taupo Volcanic Zone N2 and I from organics
N2/Ar ~400; 129I age equals that of subducted organics

2. Porphyry S isotopically from seawater
3. Pt, Pd from mantle source

Hattori and Kieth (2001), Fehn and Snyder (2003), Giggenbach (1997)

Age subd. seds

erosion

Asthenosphere circulation



Summary
1. Porphyries, one of most important OD types, form 

where magmatic water vents from qtz monzonite 
intrusions

2. Magmatic water, in equilibrium at high T, is highly 
reactive (acid) when cooled

3. Basaltic sill intrusions contribute S and may trigger 
rapid expulsion of magmatic volatiles

4. Porphyries source of Cu, Au, Mo, Sn, W, and REE (Pt, 
Pd,Th,…)

5. Gold deposits like El Indeo form near surface where 
magmatic volatiles vent

6. Top (Au) and bottom (p) of vent system mineralized, 
middles may be barren

7. Metal cycle (concentr in oceanic crust and sediments 
with recirculation through asthenosphere and erosion) 
may account for enriched regions
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