Economic Analysis

Homework

2017

PS2: Economic analysis problem set

1. a) Calculate the net present value of your education at Cornell 10 years after graduation assuming $\$ 40,000$ cost per year followed by what you expect to earn upon graduation.
b) Compare this to what you would expect to earn over 14 years if you entered the workforce instead of Cornell. (Hint, you can modify the simple examples part of the spreadsheet on blackboard to carry out these two calculations).
2. a) Calculate the change in the NPV for the base case mine (8% discount, 1 million/year exploration tax incentive) if the government gave an exploration tax credit of $\$ 1.5$ million per year instead of $\$ 1$ million per year. (Hint, appropriately adjust the tax discount multiplier.)
b) What is the change in IRR?
c) Plot the NPV vs time when the discount rate equals the internal rate of return. (Hint: Use the spreadsheet and the plot will appear on the associated excel sheet.)
d) Explain why the shape of the curve is expected.
3. Tabulate the NPV of 350 MWe power plants in the "Electrical Costs unitized" spreadsheet on Blackboard assuming a discount rate of 8%, a tax rate of 30%, and an electricity sales price of $8 \mathbb{C} / \mathrm{kWh}$. Use the base capacity factors, construction, and fuel costs in that spreadsheet (from the 2005 OECD Electrical Generation Costs Projections pdf), and assume a 40 year plant life. Comment on what your results tells you.
4. In 2005 solar electricity generation was much more expensive than the other alternatives because of its capacity factor and high cost of construction, but from the discussion in lecture the cost of solar has dropped dramatically because of a strong decrease in construction cost, an increase in capacity factor, and a decrease in operations and maintenance. How much could the capacity factor be increased above that assumed in the spreadsheet? (Search in the OECD pdf, look at what MacKay has to say, and look at the web).
5. From the lecture material (see links) construction costs for Solar Photovolaics may have dropped from $\$ 4000 / \mathrm{kW}_{\mathrm{e}}$ to $\$ 1500 / \mathrm{kW}_{\mathrm{e}}$, and O\&M may be $\sim 0.2 \mathrm{C} / \mathrm{kWh}$ rather than $0.48 \mathrm{C} / \mathrm{kWh}$. Make a table showing the levelized cost of the base case of $\left(\$ 4000 / \mathrm{kW}_{\mathrm{e}}, \mathrm{O} \& \mathrm{M}=0.48 \mathrm{C} / \mathrm{kWh}\right.$, capacity $=20 \%$, discount $=10 \%$, life $\left.=40 \mathrm{y}\right)$ and sequential changes in the base case: (a) increase capacity factor to 24%, (b) decrease O\&M to $0.2 \mathrm{C} / \mathrm{kWh}$, (c) decrease the discount rate to 7%, and (d) then to 4%, (e) decrease the construction costs to $\$ 1500 / \mathrm{kW}_{\mathrm{e}}$, and (f) then to $\$ 1170$, and then the impact of increasing the discount rate for this case to 7 and then 10%. You will find the lowest levelized cost is $3.95 \mathrm{C} / \mathrm{kWh}$. From this analysis how certain are you that this is a good estimate.
6. What are the costs left out of your spreadsheet analysis?
7. a) Calculate the net present value of your education at Cornell 10 years after graduation assuming $\$ 40,000$ cost per year followed by what you expect to earn upon graduation.
b) Compare this to what you would expect to earn over 10 years if you entered the workforce instead of Cornell.
c) What will your comparative situation be 20 years out? How much higher will your salary be?
d) Do you think the NPV calculation captures how what your comparative lifestyle will be 10 or 20 years from starting Cornell?

8. a) Calculate the change in the NPV for the base case mine (8% discount, 1 million/year exploration tax incentive) if the government gave an exploration tax credit of $\$ 1.5$ million per year instead of $\$ 1$ million per year. (Hint, appropriately adjust the tax discount multiplier.)
b) What is the change in IRR?

9. c) Plot the NPV vs time when the discount rate equals the internal rate of return. (Hint: Use the spreadsheet and the plot will appear on the associated excel sheet.)
d) Explain why the shape of the curve is expected.

NPV vs Time

c) Black curve is the case where discount rate = IRR
d) Expected because by definition the IRR is the discount rate at which the NPV at the mine life is zero.
3. Tabulate the NPV of 350 MWe power plants in the spreadsheet (disc rate $8 \%, 30 \%$ tax).

Comment on what this tells you.

Coal		
	350	MWe plant
NPV		$\$$
NPV tax		392.1
		$\$$
		(319.9)
		millions

Nuclear

	350	MWe plant
NPV	$\$$	195.2
NPV tax	$\$$	(320.6)
	millions	

Gas	
350 MWe plant	
NPV	$\$ 340.9$
NPV tax	$\$(232.0)$
	millions

Micro Hydro

350 MWe plant

NPV	$\$ 153.6$
NPV tax	$\$(339.4)$
	millions

Wind

350			MWe plant
NPV	$\$(28.4)$		
NPV tax	$\$(152.8)$		
	millions		

CHP

350 MWe plant
NPV $\$ 269.86$
NPV tax $\$(294.63)$

Solar Thermoele

	350	
MWe plant		
NPV	$\$(1,476.1)$	
NPV tax	$\$ 203.1$	
	millions	

Solar PV

350 MWe plant	
NPV	$\$(1,076.88)$
NPV tax	$\$ \quad(10.60)$

Tells you wind and solar not economic Nuclear, MicroHydro and CHP less "
4. How much could the capacity factor be increased above that assumed in the spreadsheet? (Search in the OECD pdf, look at what MacKay has to say, and look at the web).

Capacity factor $=$ ratio of actual output to output at full capacity.

- OECD (2005) projects solar PV could achieve capacity factor of 24% (from 20% assumed)

MacKay's rules of thumb

1. Incident energy:

2. Efficiency of conversion to electricity

$110 \mathrm{~W} / \mathrm{m}^{2}$
Incident avg/inc clds
$1000 \times 0.32 \times 0.34$
inc=mid-day incident

MacKay p39: "Typical solar panels have an efficiency of about 10\%; expensive ones 20\%. (Fundamental physical laws omit the efficiency of photovoltaic systems to at best $\mathbf{6 0 \%}$ with perfect concentrating mirror or lenses, and to 45% without concentration. A mass produced device with efficiency greater than $\mathbf{3 0 \%}$ would be remarkable.) The average power delivered by a south-facing 20\% efficient photovoltaic panels in Britain would be

$$
20 \% \times 110 \mathrm{~W} \mathrm{~m}^{-2}=\mathbf{2 2} \mathbf{W ~ m}^{-2}
$$

OECD (2005): Max conversion to electricity efficiency is 32% in the lab (p. 166). Inverters to AC now 90-95\% efficient.

Cornell 11 acre solar farm $6.4 \mathbf{~ W ~ m}^{-2}$ Long Island 200 acre solar farm $6.2 \mathbf{W ~ m}^{-2}$
5. Make a table showing the levelized cost for:
$\$ 4000 / \mathrm{kW}_{\mathrm{e}} \quad \mathrm{O} \& \mathrm{M}=0.48 \mathrm{C} / \mathrm{kWh}$ capacity=20\% discount=10\% life=40y 24\%
$0.2 \$ / \mathrm{kWh}$
7\%
4\%
$\$ 1500$
\$1170

Solar Photovoltaic (USA-2)

Construction $\left[\$ / \mathbf{k W}_{\mathrm{e}}\right]$	O\&M $[\$ / \mathrm{kWh}]$	Capacity $[\%]$	Discount $[\% / \mathrm{y}]$	Plant Live $[\mathrm{y}]$	Levelized cost $[\$ / \mathrm{kWh}]$
$\$ 4000$	0.48	20	10	40	27.3
		24			22.8
				25	24.5
	0.20			40	20.0
$\$ 1500$			7		15.85
$\$ 1170$			4		10.95
					4.75
			7		3.95
			10		5.35

6. What are the costs left out of your spreadsheet analysis?

1. Energy Storage

2. Polution

Chinese Protesters Accuse Solar Panel Plant of Pollution

Protesters and police officers faced off on Saturday at a plant in the Chinese province of Zhejpang. The unrest began Thursday.
By SHARON LaFRANIERE
Published September 18, 2011
Images from Doug Lee
State Assembly Candidate Long Island

The dirty side of clean solar energy

500 thousand pounds

400 Exporting CA solar waste
More than 46 million pounds of waste was generated from solar 300 companies in California between 2007 and mid-2011. While 97% of the waste remained in California, almost 1.4 million pounds of the 200 hazardous material was shipped to other sites across the country.

Mlail Online

In China, the true cost of Britain's clean, green wind power experiment: Pollution on a disastrous scale

This toxic lake poisons Chinese farmers, their children and their land. It is what's left behind after making the magnets for Britain's latest wind turbines... and, as a special Live investigation reveals, is merely one of a multitude of environmental sins committed in the name of our new green Jerusalem.

Rare earth processing turned a lake into toxic mud pond

3. Land impact

visual

4. Habitat dissection

Service roads

