What on 免 rutstate?
Lecture 182 Fluadiat Rut Iated-Invorlaniegifimal

Flind redamier is the stody y hau fhich rorejain
(1)

Thefurt quitern is: unat u a/hund? tou woildve
 Neincontrat Whit is their (feudi) ant stots like? There guentive mi he subjert. of tle font ctostar. Reall Nyy inve chogte ad ola gunt an impotent N.
A. What wa thend:

$\left[\begin{array}{l}\text { Sidid } \rightarrow \text { lymad Un exceed yald paint } \\ \text { Rheology } \rightarrow \text { (rchad at shot } \Delta t \text {, fhil at lory) }\end{array}\right]$
2. $\frac{80 n}{-\sin }-$ expand tifill confurn
ligind - valume net ctomg much - Lill botton if a containir sind hase an space abose.
 Aroy in ligned, wateringon, deffe im difout thuch
3. Imimisentle fhurde - have intefree
wh behrier as of at veue m tensim - logeal ore plud bif to the we tykty bourd
 it will ainl into in sely-laving bill:

Af the bundary tere vell be a net inund divetid ferce teeome fo cenrature and the foct The interior jbud us mose atraited to ihylf than at uto te obide jlimel
Fore bolavee eluctitn fla

$$
\begin{equation*}
p_{i}-p_{0}=\frac{2 \sigma}{R} \tag{1}
\end{equation*}
$$

Une σ is thi sompre tenew in M / m (pare per unst leuptig a ocit in do inlifue)

$$
\begin{aligned}
1 F & =2 \pi r \sigma \\
I_{F} & =\mu \\
H_{F} & =\pi r^{2}\left(p_{i}-p_{0}\right) \\
\therefore \quad p_{i}-p_{0} & =\frac{2 \sigma}{r} \quad+13
\end{aligned}
$$

intufuil
Sujuitevim ss hit diaw wert unto copulloy tive, - exphins wilfig ste. Iteho
contrat floi of mon Mamore flued in porow sodedr. Fingey of for int hivedore tore (Ingte for peitreiderete) We ll get to Thm totes un crusce.
if Voscout is tephunt y"a byind Hont determinh har it will want stere

$$
\begin{aligned}
& \therefore \mu M \frac{H \cdot S}{m^{2}}=\frac{\mathrm{kgm} \mathrm{~S}^{-2} \dot{S}^{\prime}}{\mathrm{m}^{2}}=\mathrm{kg}^{-1} m^{\prime} \\
& \mu=\text { dymams uncurif } \\
& \quad=\mathrm{kg} m^{-1} \mathrm{~s}^{-1} \text { or } \frac{N \cdot S}{m^{2}}
\end{aligned}
$$

$$
\frac{\mu}{\rho} \stackrel{m}{=} \frac{k_{g} m^{-1} s^{-1}}{\mathrm{~kg} / \mathrm{m}^{3}}=m^{2} s^{-1} \quad(\text { dffomm } \operatorname{conctat})
$$

Anelog to Teivine diffony, K
$z=2 \sqrt{k t}$
ditus themal fronk dofpusint a sebid

$$
z=2 \sqrt{\nu t}
$$

dinteres veluy draAnntic will deffinerm to lyide (tranastin fin f tymis abare tis stem athurat)
B. Fuids at Rent

Wht is ha out stith Jafmid lik?
Vimp queritivi, odrate a totle men-friviol.
nextratyslyte flid
Iscatropic (+iraro
adratitu)
Hibualf is,p
s.t. ole sime made
s.t. all sam mades.
oulscule an adiofoter ingeneul $\nabla p=-\rho g \hat{z}$
sock
(3) If n_{0} fio $\nabla p+\rho g \hat{z}=0$

Dinunium $y R^{+} I^{-}$

$$
\begin{aligned}
& P=\rho R T \\
& \frac{\text { ky. } m \cdot s^{-2}}{m^{2}}=\frac{\mathrm{kg}_{\mathrm{m}}}{m^{2}, R_{i}} K \\
& R^{m}=m^{2} s^{-2} k^{-1} \\
& =\frac{R_{y}}{M_{m}}=\frac{k_{n} \cdot h^{-1} k^{-1}}{m!k_{j} k m k^{-1}}=\frac{\left(\lg _{m} s^{-2} \cdot m\right) k^{-1}}{1} \\
& J=m^{2} s^{-2} k^{-1} \\
& R_{0}=8314.36 \quad \text { J.knul }^{-1} \mathrm{k}^{-1} \\
& =2 k_{k}^{\prime} l^{\prime} \cdot k_{j}^{-1} k^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =287 \frac{\mathrm{kgms} \mathrm{~s}^{-2} \mathrm{~mm} \mathrm{k}^{-1}}{\frac{\mathrm{~kg}}{\mathrm{~g}}} \\
& m^{2} \frac{1}{1}=k^{-1} \\
& p=1 / 2 p \bar{v}^{2}=\frac{1}{3} \dot{m} m \bar{v}^{2}
\end{aligned}
$$

(3a)

$$
\left[\begin{array}{l}
\frac{\partial p}{\partial x} \\
\frac{\partial p}{\partial y} \\
\frac{\partial p}{\partial z}
\end{array}\right]=-p\left(\begin{array}{l}
0 \\
0 \\
g
\end{array}\right)
$$

Nou

$$
p=-g \int_{z}^{z} \rho d z
$$

and for $\partial_{x} p=\partial_{\partial} p=0 \quad \therefore=\rho(z) \frac{\sigma \hat{y}}{}$ Othund pirold v.y Cabing.

No Hev iff: $p_{0}(z)=-g \int p_{0}(z) d z$ Whe p_{0} is the no-hou doy.f fhat ard a fatand z
 presore of isompi of E for exmmine.

Fir aperfect for at constant T,
Genh
(4) $P V=R T$ ar $P=P R T, 110$

$$
\left(\frac{N}{n^{2}}=\frac{k g m s^{-2}}{m^{2}} \cdot \frac{d / g}{m^{2} / 2 s^{-2}}=m^{m^{2} s^{-2}} \quad \cdot \frac{p p}{d z}=-p g=-\frac{p q}{R T}\right.
$$

Exinem

$$
\begin{aligned}
& J=F \cdot d x \\
& \text { by } m 5^{-2} \ldots m \\
& \stackrel{\mathrm{~kg} \mathrm{~m}}{ } \mathrm{~m}^{2} \\
& R=\frac{\sigma x^{2} x^{-1}}{k_{y}^{-1}}=\frac{5 k^{-1}}{k_{g}} \\
& \text { n } \frac{y m^{2} s^{-2} k^{-1}}{y}=m^{2} s^{-2} k^{-1} \\
& \frac{R T}{g}=\frac{m^{2}+k^{*}}{m}=m \\
& \frac{R T}{g}=\frac{(287)(250)}{9.8}=\delta \cong 7.3 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{p=}^{p} \frac{d p}{p}=\int_{z=0}^{z}-\frac{g}{R T} d z \\
& \ln p=-g Z / R T \\
& p=p_{s} e^{-g z / R T}=p_{s} e^{-z / \delta}
\end{aligned}
$$

(5)

$$
\dot{\delta}=R T / g=\text { scile heyph of fu. }
$$ atmoupiese.

at $T=250^{\circ} \mathrm{k} \quad\left(-23^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad \text { RO } \\
& R=287\left(=8314.36 \mathrm{~J} \mathrm{kmol}^{-1} \mathrm{k}^{-1} / \mathrm{m}_{\text {dru }}\right. \text { j } \\
& \left.M_{\text {dry }}=25.996 \mathrm{~kg} / \mathrm{kmel}\right)
\end{aligned}
$$

C. More Realuthe Atrasihare
of comse Tatm \neq conslanz $-23^{\circ} \mathrm{C}$, so the ritutim s a bymar conglintid. Infoet tus sate troly, rom it must undastand sime: toumody

We will not do justur tive jormoly vamien :A in dremen tues.

Cut ise de med to urdusbarid the Andomeetit: If dut (friefmem) aisibilutey an atrophere bitr reit (aduatate and isenterue).

Therrieds: nimis us rifindimentel sccenee- Te hent + enping (carhot egeli).
I phogues, dimisj. Tou all knos lst $10.5=$ caveration Lenegs, $2 d$ bw $=$ behavin (untintring, 3d ave abidute Aso furdomentty sifted it ranematien (ar vica roceas).

 anofrerm.

1. Prulog.

Lets sumpoe tu to mbintimal evorgy of to molicich of a goir repesents its inturm einerg.
 for now surgou it is just kiviten) The intoinl
exiyg can be tryigtty on mpporxiinty $T g$ but unble T int it is an extinsiar paramites The is inderiult y tow the inturid eneyg umregaued of propertial to the nimant y jfhel at
 $2 \mathrm{~kg} / \mathrm{m}$ 2e, te

Nou letr say ar ei wa Lundimy a bundhy vavithi hae entrory aid volume (and th
 so
$\left(6^{-}\right)$

$$
\begin{aligned}
e & =e(s, v) \\
d e & =\left(\frac{\partial e}{\partial s}\right)_{v} d s+\left(\frac{\partial e}{\partial v}\right)_{s} d v
\end{aligned}
$$

If re dypure

$$
\begin{aligned}
& T \equiv\left(\frac{\partial e}{\partial \bar{S}}\right)_{V} \\
& \text { Ton atpes. } \\
& P \equiv-\left(\frac{\partial e}{\partial v}\right)_{s} \\
& \text { s.t. de ua }
\end{aligned}
$$

(6)

Then
First toud Thingromen
nent ong haniv inite - fund
statent jet
enizy five:
int the systor
guascuthe
work donec on.
AJfund by'tur encirimnent
(la usin fyploge soit
Siruntis)

$$
\partial_{\phi}=d e-d \omega_{m}=d e+P d V
$$

impurfer sifiald to
"The intyrhy two a to for a pationth roum
 te cineys dyffersere Δe, hid alovie is indirulif the prous." (piocallon)

क人,
For Penfert, frotimlen eingin, de $=0$, and TCom be convetuet to,W an diterminul

$$
\begin{aligned}
& T d s-P d v=0 \\
& \text { 大s }+\Delta w=0
\end{aligned}
$$

oald hat, zetwork.

Exact D-ffernitual

$$
\begin{aligned}
& d e=m(x, y) d x+N(x, y) d y \\
& \text { out } \frac{\partial M}{\partial y}=\frac{\partial M}{\partial x} \\
& d e=\left(\frac{\partial e}{\partial s}\right)_{V} d s+\left(\frac{\partial e}{\partial V}\right)_{s} d V \\
& \equiv T \quad \equiv-P \\
& d e=T d s-P d V \\
& \text { exat }\left.\quad \frac{\partial T}{\partial V}\right|_{s}=\left.\frac{\partial P}{\partial s}\right|_{V} \\
& \left(\frac{\partial^{2} e}{\partial s \partial v}\right)_{v s}=\left(\frac{\partial e^{2} e}{\partial s \partial v}\right)_{v}
\end{aligned}
$$

doy exat untimin selfel ruaune T-d P aredifuil st. ent i!

Lecturs 2 - Fluch of Put: The Themondyonmies
Last firm ve ended uth a bry dramen 1

- Themodyranmer sy siem with fiemble bouderier Thrayd chiel hant cameran ad rechmual ($p \Delta v$) woork combe drean te systum

 unt \rightarrow oul are le furalator f Therondgramin

$$
\begin{aligned}
& \text { strite undle } \equiv \text { exactionfferate } \equiv \text { pupht typunte ete } \\
& \equiv \text { exterrivitumanter }
\end{aligned}
$$

Cons dor internal enerso, e:

$$
\begin{gathered}
e=e(s, v) \\
d e=\left(\frac{\partial e}{\partial s}\right)_{v} d s+\left(\frac{\partial e}{\partial v}\right)_{s} d v \\
\frac{111}{T}-P
\end{gathered}
$$

$$
\begin{equation*}
\lambda_{e}=T d s-P d V \tag{6}
\end{equation*}
$$

$2 d$ low

= 浬

$$
\begin{aligned}
\left(\frac{\partial T}{\partial v}\right)_{+} & =\left(\frac{\partial(-p)}{\partial s}\right)_{v} \\
\left(\frac{\partial^{2} e}{\partial s \partial v}\right)_{\Delta v} & =\left(\frac{\partial^{2} e}{\partial s \partial v}\right)_{v v}
\end{aligned}
$$

So de is exoct dyfoutel, so $\int_{1}^{2} d e=\left.e\right|_{1} ^{2}=e_{2}-e_{1}$
introl

$$
\begin{gathered}
d e=T d s-p d v \\
\left(\frac{\partial T}{\partial v}\right)_{s}=\left(\frac{\partial p}{\partial T}\right)_{v}
\end{gathered}
$$

maxrell relation culuram ber erort dofptel, e is raet.

Mou vecan define ohes guntt theme stith unvither ard set thei maxvill relations

Heluitits pre evergy

$$
f=e-T s
$$

($\max E$ ardit $T=$ carif)
entioly

$$
h=e+p v
$$

(roxe amilat P const)
scblstace

$$
g=e-T J+p V
$$

(rorn E arre it $P_{j} T=$ cont)
So for ceargle:
enthing

$$
A\left(e^{\prime \prime}+p v\right)=d h(s, p)=T d s+v d p
$$

maxuth

HCluntilt2
frue E_{2}

$$
d(e-T s)=d f(\tau, v)=-s d T-p d v
$$

maxill Behain $\left(\frac{\partial S}{\partial v}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V}$

Silter ey $\quad d(e-T+r v)=d g(T, T)=-s d T+V d p$

$$
-\left(\frac{\partial S}{\partial T}\right)_{T}=\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Mryrills relaturn olns ang seead dennter to he erproundim a combuts of $c_{v}, c_{p}, \alpha, A k_{T}$ here

$$
\begin{aligned}
& d e=T d s-P d v \\
& (d v)_{p}=T d_{s}=t_{c} \\
& \left(\frac{\partial v}{\partial \tau}\right)_{v}=\left(\frac{\Delta p}{d \tau}\right)_{v} \\
& c_{v} \\
& C_{v}=\left(\frac{\partial e}{\partial T}\right)_{v}=\left(\frac{d \varphi}{\partial T}\right)_{v} \\
& \begin{array}{c}
\text { heat carmoy } \\
\text { const vod }
\end{array} \\
& C_{p}=\left(\frac{\partial L}{d T}\right)_{p}=\left(\frac{d p}{d T}\right)_{P} \\
& \text { tut cory } \\
& \text { Cont } \\
& K_{T} \equiv \frac{1}{v}\left(\frac{\partial v}{\partial r}\right)_{T} \text { isothed corpenty } \\
& d h=T d_{r}+V d_{p} \\
& \alpha=\frac{1}{S}\left(\frac{\partial V}{\partial T}\right)_{T}=-\frac{1}{P}\left(\frac{\partial p}{\partial T}\right)_{T}^{\text {coifthent }} \\
& \text { sreapud } \\
& \text { (velts) }
\end{aligned}
$$

maxilly relatrom con te wed to shou, tor erghe, DLe:

$$
\text { (1) }\left(C_{V}=C_{r}-T V \alpha^{2} / k_{T}\right.
$$

(2)

$$
\begin{aligned}
h & \equiv e+p r \\
d h & =d e+d(p v)
\end{aligned}
$$

$$
C_{p}-C_{V}=R
$$

last time inblueded $C_{v}=\frac{3}{2} R$ for moratome fore

$$
\begin{aligned}
c_{r} & =5 / 2 R \text { tor duatonce jou } \\
c_{v} & =\frac{f}{2} R \\
c_{p} & =\left(\frac{f}{2}+1\right) R
\end{aligned}
$$

OK - Nav bred to ta $\frac{\text { rent stote } 1 \text { a finid }}{\text { Xymomily }}$ last time snw That a nutralf stith atwos, tiese is isentiolpici (unchis aho aduatitu)
(7) Sceonl
"keat flew dombth"

$$
t q \leq T d r
$$

$$
=T d \quad \text { of rernuth proceme }
$$

$\frac{\partial r}{r}=\rho g$
dures sol
$P, T_{1}{ }^{T}$ sam
abity

$$
\begin{aligned}
& \int_{1}^{2} d x \geqslant \int_{1}^{2} \frac{t q}{T} \\
& =0 \quad 1 \text { ordurtitu }(d q=0) \\
& =0 \text { y } s \text { saire errydue } \\
& \text { (rsenturain) }
\end{aligned}
$$

For an adurtitie ($t c=0$) al wentopree $(d s=0)$ thini

Marnele
entroy
all shat vainthe forn
all shat varath for

$$
\begin{aligned}
& T d j^{\prime}=d e+P d v \\
& \text { shind ons ohe } f \\
& T d s=d h-V d P
\end{aligned}
$$

(10)

$$
\begin{aligned}
& d e \equiv\left(c_{v} d T\right)_{r}=-p d v \\
& d u \equiv\left(c_{r} d T\right)_{r}=v d p
\end{aligned}
$$

dwinding

$$
\begin{aligned}
\gamma=\frac{c_{0}}{c_{0}} & =\frac{(f / 2+1) R}{(f / 2) R} \\
\gamma & =\frac{f+2}{f}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{c_{r}}{c_{v}} \equiv \gamma=\frac{v d p}{-p d v} \\
& \frac{d p}{p}=-\gamma \frac{d v}{v}=\gamma \frac{d p}{p} \\
& \ln p=\ln p^{\gamma}+\text { const } \\
& \ln \frac{p}{\rho^{\gamma}}=\text { const }
\end{aligned}
$$

(II)

$$
\frac{p}{p^{r}}=c_{\text {onst }}
$$

Mou for a peyet son $p=p R T$, so:
(14) $\quad \frac{T_{1}}{T_{2}}=\frac{(p / \rho)_{1}}{(p / \rho)_{2}}=\frac{p_{1}^{1-\frac{1}{\gamma}}}{p_{2}^{1-1 / \gamma}}=\left(\frac{p_{1}}{p_{2}}\right)^{1-1 / \gamma}$

Fram (II) $r^{\prime} P \alpha_{p}^{y \gamma}$, it is inde bruethat
(Is) $\quad \frac{\rho_{1}}{\rho_{2}}=\left(\frac{p_{1}}{p_{2}}\right)^{1 / \gamma}$

$$
\begin{array}{ll}
V \propto p^{\gamma} \\
\frac{V_{1}}{V_{2}}=\left(\frac{p_{1}}{p_{2}}\right)^{\gamma} \quad \frac{T_{1}}{T_{2}}=\left(\frac{p_{1}^{1-1 / \gamma}}{p_{2}}\right)^{\frac{p_{1}}{y_{2}}=\left(\frac{v_{1}}{V_{2}}\right)^{1 / \gamma}} \begin{array}{l}
\left(\frac{v_{1}^{1 / \gamma}}{V_{2}}\right)^{1-1 / r} \\
\\
\frac{T_{1}}{T_{2}}=\frac{V_{1}}{V_{2}}
\end{array}
\end{array}
$$

4. Te odiabate trainatio grioduent $1 T / d z$ (1) (i)
(14) $p \ln T_{a}-\ln T_{0}=\left(1-y_{r}\right)\left(\ln p_{a}-\ln p_{0}\right)$
\int_{0}^{5}

$$
\frac{c^{-1}}{x_{i}}\left(x^{k}\right) \quad \frac{c_{p}-c_{v}}{c_{p}} \frac{1}{c_{p}-c_{v}}=\frac{1}{c_{p}}
$$

(16)

$$
\frac{d T_{a}}{d z}=\frac{-g}{C_{p}}=\Gamma_{a}
$$

eduhute ropminte
so

$$
\Gamma_{a}=\left(\frac{\gamma-1}{\gamma} \frac{1}{p_{a}} \frac{\partial \rho_{n}}{\alpha z}\right) T_{a}
$$

$$
\begin{aligned}
c_{p} & =1005 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{k}^{-1} \\
g & =9.8 \mathrm{~m} \mathrm{~s}^{-2} \\
\frac{-g}{c_{p}} & \cong 10^{-2} \cdot \mathrm{k} / \mathrm{m}=10^{\circ} \mathrm{c} / \mathrm{km}
\end{aligned}
$$

Q. Potentul Tenyuitan, θ_{1} and stibilt y-Tu afinosthine

Itu curfomary fo corrut T for adisibiter iffet by determining what That I vould be at secelisel of rue ahabaticalf mined toser livel. Thi sexbut
 framit $\frac{\theta}{E}=\left(\frac{p s}{p_{s}}\right)^{1-1 / 2}$

Rokately Atrongtue

b. Doluntil Dunt mocenvs

$$
\frac{e_{1}}{\rho_{s}}=\left(\frac{p}{p_{s}}\right)^{1 / \gamma}
$$

form (15) beng at sopue
(18)

$$
p=p_{\theta}+\left(\frac{p}{p_{s}}\right)^{1 / \gamma}
$$

$$
p_{\sigma}=p\left(\frac{p_{s}}{p}\right)^{1 /}
$$

$\rho=\rho(T)$ monke $T(t)$ meame !

$$
\begin{aligned}
& \frac{\partial P_{\theta}}{\partial z}>0 \\
& \text { visithe }
\end{aligned}
$$

One quit a-d mupl dijusam, bord.
preminerarikatron ins so raid leat fos no tio b escigex. Thur for sound Hextmontix Cor oceoms on mante) us ndwinter whit iste rreed y sivil in a:

Speed of sumd 4 :

$$
c^{2}=\left(\frac{\partial p}{\partial p}\right)_{s} \quad\left({ }^{\text {contentry }}\right.
$$

finm (rio) $\frac{v d p}{-p d v}=\gamma=\frac{p}{p} \cdot \frac{d p}{d p} \quad$ of conts

$$
\frac{d v}{v}=-\frac{d p}{p} \quad \frac{d p}{d p}=\frac{\gamma p}{p}=\frac{\gamma \rho / R T}{\not \rho}
$$

Forn rept ger $p=P R T$
Thm

$$
c=\sqrt{\gamma R T} \quad \text { for pefitgon }
$$

For vat

$$
C=\sqrt{B / p} \quad D=\text { bulk modrum }
$$

Mones'	$0 c$	$N[\mathrm{~m} / \mathrm{s}]$
	0	1403
clingits	10	1447
chages	50	1541
	90	1550

$$
\begin{aligned}
& \equiv \frac{-1}{\frac{1}{v} \frac{d v}{d P}}=\frac{-V \Delta p}{\Delta v} \\
& \stackrel{m}{=} N / m^{2}=\frac{k_{1}-m_{-1} 2^{2}}{m^{2}} \\
& B / p=\frac{x y^{\prime}-m^{2} s^{2}}{m^{2}}=m^{2} / m^{2} \\
& \therefore \frac{\sqrt{n}}{1}=\operatorname{reg}
\end{aligned}
$$

$A W=$ copllles, uscof, ets of, one y, γ, themburam

